keeling plot
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Eric Saboya ◽  
Giulia Zazzeri ◽  
Heather Graven ◽  
Alistair J. Manning ◽  
Sylvia Englund Michel

Abstract. Assessment of bottom-up greenhouse gas emissions estimates through independent methods is needed to demonstrate whether reported values are accurate or if bottom-up methodologies need to be refined. We report atmospheric methane (CH4) mole fractions and δ13CH4 measurements from Imperial College London since early 2018 using a Picarro G2201-i analyser. Measurements from March 2018 to October 2020 were compared to simulations of CH4 mole fractions and δ13CH4 produced using the NAME dispersion model coupled with the UK National Atmospheric Emissions Inventory, UK NAEI, and the global inventory, EDGAR, with model spatial resolutions of ~2 km, ~10 km, and ~25 km. Observed mole fractions were underestimated by 30–35 % in the NAEI simulations. In contrast, a good correspondence between observations and EDGAR simulations was seen. There was no correlation between the measured and simulated δ13CH4 values for either NAEI or EDGAR, however, suggesting the inventories’ sectoral attributions are incorrect. On average, natural gas sources accounted for 20–28 % of the above background CH4 in the NAEI simulations, and only 6–9 % in the EDGAR simulations. In contrast, nearly 84 % of isotopic source values calculated by Keeling plot analysis (using measurement data from the afternoon) of individual pollution events were higher than −45 ‰, suggesting the primary CH4 sources in London are actually natural gas leaks. The simulation-observation comparison of CH4 mole fractions suggests that total emissions in London are much higher than the NAEI estimate (0.04 Tg CH4 yr−1) but close to, or slightly lower than the EDGAR estimate (0.10 Tg CH4 yr−1). However, the simulation-observation comparison of δ13CH4 and the Keeling plot results indicate that emissions due to natural gas leaks in London are being underestimated in both the UK NAEI and EDGAR.


2021 ◽  
Author(s):  
Peter Sperlich ◽  
Gordon W. Brailsford ◽  
Rowena C. Moss ◽  
John McGregor ◽  
Ross J. Martin ◽  
...  

Abstract. We assess the performance of an Isotope Ratio Infrared Spectrometer (IRIS) to measure carbon (δ13C) and oxygen (δ18O) isotope ratios in atmospheric carbon dioxide (CO2) and report observations from a 26 day field deployment trial at Baring Head, New Zealand, NIWA's atmospheric observatory for Southern Ocean baseline air. Our study describes an operational method to improve the performance in comparison to previous publications on this analytical technique. By using a calibration technique that reflected the principle of identical treatment of sample and reference gases, we achieved a reproducibility of 0.07 ‰ for δ13C-CO2 and 0.06 ‰ for δ18O-CO2 over multiple days. This performance is within the "extended compatibility goal" of 0.1 ‰ for both δ13C-CO2 and δ18O-CO2, which was recommended by the World Meteorological Organisation (WMO) for studies of regional or urban CO2 fluxes. One goal of this study was to assess the capabilities and limitations of the IRIS analyser to resolve δ13C-CO2 and δ18O-CO2 variations under field conditions. Therefore, we selected multiple events within the 26 day record for Keeling Plot Analysis. This resolved the isotopic composition of end members with an uncertainty of ≤ 1 ‰ when the magnitude of CO2 signals is larger than 10 ppm. The uncertainty of the Keeling Plot Analysis strongly increased for smaller CO2 events (2–7 ppm), where the instrument performance is the limiting factor and may only allow for the distinction between very different end members, such as the role of terrestrial versus oceanic carbon cycle processes. Further improvement in measurement performance is desirable to meet the WMO "network compatibility goal" of 0.01 ‰ for δ13C-CO2 and 0.05 ‰ for δ18O-CO2, which is needed to resolve the small variability that is typical for background air observatories such as Baring Head.


2021 ◽  
Vol 21 (13) ◽  
pp. 10527-10555
Author(s):  
Xinyi Lu ◽  
Stephen J. Harris ◽  
Rebecca E. Fisher ◽  
James L. France ◽  
Euan G. Nisbet ◽  
...  

Abstract. In regions where there are multiple sources of methane (CH4) in close proximity, it can be difficult to apportion the CH4 measured in the atmosphere to the appropriate sources. In the Surat Basin, Queensland, Australia, coal seam gas (CSG) developments are surrounded by cattle feedlots, grazing cattle, piggeries, coal mines, urban centres and natural sources of CH4. The characterization of carbon (δ13C) and hydrogen (δD) stable isotopic composition of CH4 can help distinguish between specific emitters of CH4. However, in Australia there is a paucity of data on the various isotopic signatures of the different source types. This research examines whether dual isotopic signatures of CH4 can be used to distinguish between sources of CH4 in the Surat Basin. We also highlight the benefits of sampling at nighttime. During two campaigns in 2018 and 2019, a mobile CH4 monitoring system was used to detect CH4 plumes. Sixteen plumes immediately downwind from known CH4 sources (or individual facilities) were sampled and analysed for their CH4 mole fraction and δ13CCH4 and δDCH4 signatures. The isotopic signatures of the CH4 sources were determined using the Keeling plot method. These new source signatures were then compared to values documented in reports and peer-reviewed journal articles. In the Surat Basin, CSG sources have δ13CCH4 signatures between −55.6 ‰ and −50.9 ‰ and δDCH4 signatures between −207.1 ‰ and −193.8 ‰. Emissions from an open-cut coal mine have δ13CCH4 and δDCH4 signatures of -60.0±0.6 ‰ and -209.7±1.8 ‰ respectively. Emissions from two ground seeps (abandoned coal exploration wells) have δ13CCH4 signatures of -59.9±0.3 ‰ and -60.5±0.2 ‰ and δDCH4 signatures of -185.0±3.1 ‰ and -190.2±1.4 ‰. A river seep had a δ13CCH4 signature of -61.2±1.4 ‰ and a δDCH4 signature of -225.1±2.9 ‰. Three dominant agricultural sources were analysed. The δ13CCH4 and δDCH4 signatures of a cattle feedlot are -62.9±1.3 ‰ and -310.5±4.6 ‰ respectively, grazing (pasture) cattle have δ13CCH4 and δDCH4 signatures of -59.7±1.0 ‰ and -290.5±3.1 ‰ respectively, and a piggery sampled had δ13CCH4 and δDCH4 signatures of -47.6±0.2 ‰ and -300.1±2.6 ‰ respectively, which reflects emissions from animal waste. An export abattoir (meat works and processing) had δ13CCH4 and δDCH4 signatures of -44.5±0.2 ‰ and -314.6±1.8 ‰ respectively. A plume from a wastewater treatment plant had δ13CCH4 and δDCH4 signatures of -47.6±0.2 ‰ and -177.3±2.3 ‰ respectively. In the Surat Basin, source attribution is possible when both δ13CCH4 and δDCH4 are measured for the key categories of CSG, cattle, waste from feedlots and piggeries, and water treatment plants. Under most field situations using δ13CCH4 alone will not enable clear source attribution. It is common in the Surat Basin for CSG and feedlot facilities to be co-located. Measurement of both δ13CCH4 and δDCH4 will assist in source apportionment where the plumes from two such sources are mixed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thure E. Cerling ◽  
Stefano M. Bernasconi ◽  
Lino S. Hofstetter ◽  
Madalina Jaggi ◽  
Fabia Wyss ◽  
...  

Breath and diet samples were collected from 29 taxa of animals at the Zurich and Basel Zoos to characterize the carbon isotope enrichment between breath and diet. Diet samples were measured for δ13C and breath samples for CH4/CO2 ratios and for the respired component of δ13C using the Keeling plot approach. Different digestive physiologies included coprophagous and non-coprophagous hindgut fermenters, and non-ruminant and ruminant foregut fermenters. Isotope enrichments from diet to breath were 0.8 ± 0.9‰, 3.5 ± 0.8‰, 2.3 ± 0.4‰, and 4.1 ± 1.0‰, respectively. CH4/CO2 ratios were strongly correlated with isotope enrichments for both hindgut and foregut digestive strategies, although CH4 production was not the sole reason for isotope enrichment. Average CH4/CO2 ratios per taxon ranged over several orders of magnitude from 10–5 to 10–1. The isotope enrichment values for diet-breath can be used to further estimate the isotope enrichment from diet-enamel because Passey et al. (2005b) found a nearly constant isotope enrichment for breath-enamel for diverse mammalian taxa. The understanding of isotope enrichment factors from diet to breath and diet to enamel will have important applications in the field of animal physiology, and possibly also for wildlife ecology and paleontology.


2021 ◽  
Author(s):  
Eric Saboya ◽  
Giulia Zazzeri ◽  
Heather Graven ◽  
Alistair J. Manning ◽  
Sylvia Englund Michel

<p>Assessment of bottom-up greenhouse gas emissions estimates through independent methods is needed to demonstrate whether reported values are accurate or if bottom-up methodologies need to be refined. Previous studies of measurements of atmospheric methane (CH<sub>4</sub>) in London revealed that inventories substantially underestimated the amount of natural gas CH<sub>4</sub><sup> 1,2</sup>. We report atmospheric CH<sub>4</sub> concentrations and δ<sup>13</sup>CH<sub>4</sub> measurements from Imperial College London since early 2018 using a Picarro G2201-i analyser. Measurements from Sept. 2019-Oct. 2020 were compared to the values simulated using the dispersion model NAME coupled with the UK national atmospheric emissions inventory, NAEI, and the global inventory, EDGAR, for emissions outside the UK. Simulations of CH<sub>4</sub> concentration and δ<sup>13</sup>CH<sub>4</sub> values were generated using nested NAME back-trajectories with horizontal spatial resolutions of 2 km, 10 km and 30 km. Observed concentrations were underestimated in the simulations by 22 % for all data, and by 16 % when using only 13:00-17:00 data. There was no correlation between the measured and simulated δ<sup>13</sup>CH<sub>4</sub> values. On average, simulated natural gas mole fractions accounted for 28 % of the CH<sub>4 </sub>added by regional emissions, and simulated water sector mole fractions accounted for 32 % of the CH<sub>4</sub>added by regional emissions. To estimate the isotopic source signatures for individual pollution events, an algorithm was created for automatically analysing measurement data by using the Keeling plot approach. Nearly 70 % of isotopic source values were higher than -50 ‰, suggesting the primary CH<sub>4 </sub>sources in London are natural gas leaks. The model-data comparison of δ<sup>13</sup>CH<sub>4 </sub>and Keeling plot results both indicate that emissions due to natural gas leaks in London are being underestimated in the UK NAEI and EDGAR.</p><p> </p><p><sup>1 </sup>Helfter, C. et al. (2016), Atmospheric Chemistry and Physics, 16(16), pp. 10543-10557</p><p><sup>2</sup> Zazzeri, G. et al. (2017), Scientific Reports, 7(1), pp. 1-13</p>


2021 ◽  
Author(s):  
Kazuki Kamezaki ◽  
Shohei Hattori ◽  
Naohiro Yoshida

<p>Carbonyl sulfide (OCS), the most abundant sulfur-containing gas in the ambient atmosphere, possesses great potential for tracer of the carbon cycle. Sulfur isotopic composition (<sup>34</sup>S/<sup>32</sup>S ratio, δ<sup>34</sup>S) on OCS is a feasible tool to evaluate the OCS budget. We applied the sulfur isotope measurement for the tropospheric OCS cycle and distinguished OCS sources from oceanic and anthropogenic emissions.</p><p> </p><p>Here, we present a developed measurement system of δ<sup>34</sup>S of OCS and the result of latitudinal (north-south) observations of OCS within Japan using the method. The OCS sampling system was carried to three sampling sites in Japan: Miyakojima (24°8’N, 125°3’E), Yokohama (35°5’N, 139°5’E), and Otaru (43°1’N, 141°2’E). The observed δ<sup>34</sup>Sof OCS ranging from 9.7 to 14.5‰ reflects the tropospheric OCS cycle. Particularly in winter, latitudinal decreases in δ<sup>34</sup>Svalues were found to be correlated with increases in OCS concentrations, resulting in an intercept of (4.7 ± 0.8)‰ in the Keeling plot approach. This trend suggests the transport of anthropogenic OCS emissions from the Asian continent to the western Pacific by the Asian monsoon outflow.</p><p> </p><p>The estimated background δ<sup>34</sup>S of OCS in eastern Asia is consistent with the δ<sup>34</sup>S of OCS previously reported in Israel and the Canary Islands, suggesting that the background δ<sup>34</sup>S of OCS in the Northern Hemisphere ranges from 12.0 to 13.5‰. Our constructed sulfur isotopic mass balance of OCS revealed that anthropogenic sources, not merely oceanic sources, account for much of the missing source of atmospheric OCS. This sulfur isotopic constraint on atmospheric OCS is an important step together with isotopic characterizations and analysis using a chemical transport model, will enable detailed quantitative OCS budget and estimation of gross primary production.</p>


2020 ◽  
Author(s):  
Yusen Yuan ◽  
Lixin Wang ◽  
Wenqing Lin ◽  
Wenzhe Jiao ◽  
Taisheng Du

Abstract. To better quantify water and energy cycles, numerous efforts to partition evapotranspiration (ET) into evaporation (E) and transpiration (T) have been made over the recent half century. Various methods such as direct measurements, analytical models and satellite-based estimations have been used to separate ET across the field scale to the global scale. One of the analytical methods, isotopic approach, has been often applied in terrestrial ecosystem ET partitioning. The isotopic composition of ET (δET) is a crucial parameter in the traditional isotope-based ET partition model, which however has considerable uncertainty. Here we proposed a new method relying on Keeling plot slope (k), and relying on the direct measurements of atmospheric vapor concentration (Cv) and isotopic composition of atmospheric vapor (δv), to avoid the direct use of δET. Mathematical derivation of the new method was provided, and field observations were used to evaluate the new method. The T/ET results based on the new method agreed well with those using the traditional isotopic method. The new method eliminates the high sensitivity contribution parameter δET. In addition, the new method utilized directly measured values and regressive slope of Keeling plot instead of using the interpolated Keeling plot intercept. Our study shows an analytical framework to estimate T/ET based on the Keeling plot slope and direct-measured parameters. The new method potentially reduces the uncertainty of isotope-based ET partition approach.


2020 ◽  
Vol 24 (9) ◽  
pp. 4491-4501
Author(s):  
Yusen Yuan ◽  
Taisheng Du ◽  
Honglang Wang ◽  
Lixin Wang

Abstract. The Keeling plot approach, a general method to identify the isotopic composition of source atmospheric CO2 and water vapor (i.e., evapotranspiration), has been widely used in terrestrial ecosystems. The isotopic composition of ambient water vapor (δa), an important source of atmospheric water vapor, is not able to be estimated to date using the Keeling plot approach. Here we proposed two new methods to estimate δa using the Keeling plots: one using an intersection point method and another relying on the intermediate value theorem. As the actual δa value was difficult to measure directly, we used two indirect approaches to validate our new methods. First, we performed external vapor tracking using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to facilitate explaining the variations of δa. The trajectory vapor origin results were consistent with the expectations of the δa values estimated by these two methods. Second, regression analysis was used to evaluate the relationship between δa values estimated from these two independent methods, and they are in strong agreement. This study provides an analytical framework to estimate δa using existing facilities and provides important insights into the traditional Keeling plot approach by showing (a) a possibility to calculate the proportion of evapotranspiration fluxes to total atmospheric vapor using the same instrumental setup for the traditional Keeling plot investigations and (b) perspectives on the estimation of isotope composition of ambient CO2 (δa13C).


2020 ◽  
Vol 117 (34) ◽  
pp. 20447-20452
Author(s):  
Shohei Hattori ◽  
Kazuki Kamezaki ◽  
Naohiro Yoshida

Carbonyl sulfide (OCS), the most abundant sulfur-containing gas in the atmosphere, is used as a proxy for photosynthesis rate estimation. However, a large missing source of atmospheric OCS has been inferred. Sulfur isotope measurements (34S/32S ratio andδ34S) on OCS are a feasible tool to distinguish OCS sources from oceanic and anthropogenic emissions. Here we present the latitudinal (north–south) observations of OCS concentration andδ34S within Japan. The observedδ34S of OCS of 9.7 to 14.5‰ reflects source and sink effects. Particularly in winter, latitudinal decreases inδ34S values of OCS were found to be correlated with increases in OCS concentrations, resulting an intercept of (4.7 ± 0.8)‰ in the Keeling plot approach. This result implies the transport of anthropogenic OCS emissions from the Asian continent to the western Pacific by the Asian monsoon outflow. The estimated backgroundδ34S of OCS in eastern Asia is consistent with theδ34S of OCS previously reported in Israel and the Canary Islands, suggesting that the backgroundδ34S of OCS in the Northern Hemisphere ranges from 12.0 to 13.5‰. Our constructed sulfur isotopic mass balance of OCS revealed that anthropogenic sources, not merely oceanic sources, account for much of the missing source of atmospheric OCS.


Sign in / Sign up

Export Citation Format

Share Document