Polypropylene Fiber Reinforced Concrete for Rigid Airfield Pavement

2011 ◽  
Vol 228-229 ◽  
pp. 627-633
Author(s):  
Tammam Merhej ◽  
Liang Liang Cheng ◽  
De Cheng Feng

The effect of adding polypropylene fibers; with different shapes and volume fractions; on the compressive strength, modulus of rupture, load-deflection curve and flexural toughness (equivalent flexural strength ratio) of concrete was investigated. Crimped and twisted polypropylene fibers were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. It was found that the compressive strength, flexural strength and the equivalent flexural strength ratio of concrete increased about 11%, 25% and 40% respectively by adding 0.6% volume fraction of twisted polypropylene fiber. In addition; it was found that the contribution of polypropylene fiber to the flexural strength and flexural toughness was more effective when twisted polypropylene fiber was added comparing to crimped polypropylene fibers. The experimental results were used in numerical example using FAARFIELD program to explore the airfield pavement thickness reduction resulted from polypropylene fiber incorporation.

2011 ◽  
Vol 219-220 ◽  
pp. 1601-1607 ◽  
Author(s):  
Tammam Merhej ◽  
Xin Kai Li ◽  
De Cheng Feng

This paper presents the experimental investigation carried out to study the behavior of polypropylene fiber reinforced concrete (PPFRC) under compression and flexure. Crimped polypropylene fibers and twisted polypropylene fiber were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. The influence of the volume fraction of each shape of polypropylene fiber on the compressive strength and flexural strength is presented. Empirical equations to predict the effect of polypropylene fiber on compressive and flexural strength of concrete were proposed using linear regression analysis. An increase of 27% in flexural strength was obtained when 0.6% volume fraction of twisted polypropylene fiber was added. It was also found that the contribution of fiber in flexural strength is more effective when twisted fibers were used. The compressive strength was found to be less affected by polypropylene fiber addition.


2020 ◽  
pp. 1-4
Author(s):  
Eethar Thanon Dawood ◽  
◽  
Tamara Waleed Ghanim ◽  

In the present paper the behavior of mortar reinforced with polypropylene fibers was studied. Different percentages of polypropylene fibers such as 0, 0.2, 0.4, 0.6 and 0.8% as volumetric fractions were used. Different properties which are flowability, density, compressive strength, flexural strength and splitting tensile strength were evaluated for all mix combinations. The experimental results indicated that a reduction in flowability was obtained with increased polypropylene fibers content. Besides, it can be concluded that the incorporation of polypropylene fiber may significantly reduce the density of mortar. The use of low volume fraction of polypropylene fiber improves the mechanical properties of HPM. Thus, the use of 0.2% of such fiber increases compressive strength by about (4-10%), at various ages.


2021 ◽  
Vol 895 ◽  
pp. 130-138
Author(s):  
Maher Faroq Al-Lebban ◽  
Abeer Ibraheem Khazaly ◽  
Rana Shabbar ◽  
Qusay A. Jabal ◽  
Layth Abdul Rasool Al Asadi

This investigation aims to improve some of the mechanical properties of concrete such as compressive strength, flexural strength, and modulus of elasticity, by using different percentages of polypropylene fibers, and also studying the durability of concrete for freeze-thaw cycles. the study shows a small increment in compressive strength due to adding fibers which were 28.3% compared with increment in flexural strength which was perfect (about 191%), modulus of elasticity also increased by adding fibers. The durability of concrete against freezing-thaw cycles for all mixes was studied. Fiber-reinforced concrete shows more durability against freezing-thawing cycles and less reduction in strength compared with reference mixes without fibers,21.5% reduction in strength for optimum polypropylene fiber concrete while the reduction in strength for normal concrete was found 54.2% in this study.


2010 ◽  
Vol 150-151 ◽  
pp. 779-782
Author(s):  
Qing Xin Zhao ◽  
Zhao Yang Liu ◽  
Jin Rui Zhang ◽  
Ran Ran Zhao

By means of the three-point bending impact equipment, with the measurement of ultrasonic velocity, the impact behavior and damage evolution of reactive powder concrete (RPC) with 0, 1%, 2% and 3% volume fraction of steel fiber were tested. The results showed that steel fiber significantly improved the compressive strength, flexural strength, flexural toughness and impact toughness of RPC matrix. The compressive strength, flexural strength, flexural toughness of RPC with 3% steel fiber increased by 40.1%, 102.1%, and 37.4 times than that of plain concrete, respectively, and simultaneously, the impact toughness of RPC with 3% steel fiber was 93.2 times higher than that with 1% steel fiber. RPC with 2% and 3% steel fiber dosage both had relatively high compressive strength, flexural strength and flexural toughness; however, compared with the sample with 2% steel fiber dosage, the impact toughness of RPC with 3% steel fiber dosage increased by more than 10 times. Therefore, taking economy and applicability into consideration, if we mainly emphasis on the compressive strength, flexural strength and flexural toughness, RPC with 2% steel fiber is optimal. While if impact toughness is critical, RPC with 3% steel fiber would be the best choice.


2011 ◽  
Vol 346 ◽  
pp. 30-33
Author(s):  
Hong Wei Wang

A designed experimental study has been conducted to investigate the effect of polypropylene fiber on the compressive strength and flexural properties of concrete containing silica fume, a large number of experiments have been carried out in this study. The flexural properties include flexural strength and flexural modulus of elasticity. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of action of polypropylene fiber on compressive strength, flexural strength and flexural modulus of elasticity has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and flexural strength, and the flexural modulus of elasticity of concrete containing silica fume decrease gradually with the increase of fiber volume fraction.


2021 ◽  
Vol 261 ◽  
pp. 02019
Author(s):  
Tu-Sheng He ◽  
Meng-Qian Xie ◽  
Yang Liu ◽  
San-Yin Zhao ◽  
Zai-Bo Li

The influence of steel fiber and polypropylene fiber mixed on compressive strength of high performance concrete (HPC) was studied. The steel fiber content (0.5%, 1.0%, 1.5%, 2.0%) (volume fraction, the same below), polypropylene fiber content (0.05%, 0.1%, 0.15%, 0.2%) and length (5mm, 6.5mm, 12mm, 18mm) were studied by L16 (45) orthogonal test for 28d ages, the range analysis and variance analysis of the test results are carried out, and the prediction model of compressive strength of hybrid fiber reinforced concrete was established. The results show that: The significant influence factor of concrete compressive strength is the volume fraction of polypropylene fiber, while the length of polypropylene fiber and the volume fraction of steel fiber are not significant; the concrete compressive strength with polypropylene fiber shows negative hybrid effect; The prediction model of compressive strength of hybrid fiber reinforced concrete has high accuracy, and the average relative errors is 2.96%.


2006 ◽  
Vol 324-325 ◽  
pp. 487-490 ◽  
Author(s):  
Xue Ying Li ◽  
Jing Zhao ◽  
Wei Zhe Wang ◽  
Alan Jiang

This paper reports on the mechanical properties and plastic shrinkage crack of concrete containing modified polypropylene fibera kind of new porous polypropylene fiber. Results of crack properties tests show that after adding modified polypropylene fiber, crack area, maximum crack width and average crack width of concrete decreased markedly. Results of mechanical properties show that flexural and splitting tensile strength of concrete with 1.0‰ modified polypropylene fiber volume fraction at 28 days increased 24% and 28% respectively compared to the reference concrete; Reticulate polypropylene fiber has less effects than modified polypropylene fiber on flexural and splitting tensile strength. Compressive strength of fiber reinforced concrete changed slightly, but flexural strength and splitting tensile strength increased, and the ratio of splitting tensile strength to compressive strength decreased.


2019 ◽  
Vol 258 ◽  
pp. 01020
Author(s):  
Rahmi Karolina ◽  
Abdiansyah Putra Siregar

One of the development of concrete technology in construction’s world is Self-Compacting Concrete. Self-Compacting Concrete (SCC) is an innovative concrete that able to “flow” and condensed by gravity and its own weight with little vibration or even without a vibration device at all. However, these concrete still have deficiencies like general concrete that is weak to tensile. To increase the tensile strength of the concrete is by adding fiber into the mix. One type of fiber that can be used as an additive to the mix is Polypropylene fibers. This study aims to determine the effect of adding polypropylene fibers to the mechanical properties and characteristics of SCC concrete and to know the optimal polypropylene fiber content in the manufacture of Self Compacting Concrete. Fiber addition variations are 0 kg / m3; 0.25 kg / m3; 0.5 kg / m3 and 0.75 kg / m3. The result of the research showed that the variation of 0.5 kg / m3 and 0.75 kg / m3 addition of fibers didn’t fulfill the requirements to be categorized as a SCC concrete. The results of hard concrete test showed the highest compressive strength that is on the SCC PP concrete of 22.31 MPa at the age of 1 day and 46.24 at the age of 28 days. The highest strength is on the SCC 0.25 PP concrete of 6.52 MPa at the age of 1 day and 10.07 at the age of 28 days. The highest flexural strength is on the SCC 0.25 PP concrete of 6.76 at the age of 1 day and 8.60 at the age of 28 days.


Author(s):  
P. Balaguru ◽  
Anil Khajuria

The mechanical properties of lightweight and normal concrete containing nylon polymeric fibers are presented. Fiber reinforced concrete made with nylon fibers was evaluated. The 19-mm-long fibers were in single filament form. The control concrete was designed for a compressive strength of 20 MPa. The primary independent variable was fiber volume fraction. The response variables were air content, unit weight of fresh concrete, compressive strength, modulus of rupture (flexural strength) and toughness, splitting tensile strength, and impact strength. The addition of fibers decreased the slump values. The decrease was negligible at fiber contents of 0.45 and 0.6 kg/m3. The fibers distributed well in the matrix. Fibers could be directly added in the mixer. The effect fibers had on unit weight of concrete is negligible. Addition of fibers up to 2.4 kg/m3 did not change the compressive, flexural, and splitting tensile strengths appreciably. Impact strength and flexural toughness increased consistently with the increase of fiber volume fraction.


2011 ◽  
Vol 30 (11) ◽  
pp. 994-1004 ◽  
Author(s):  
T. Ferdiansyah ◽  
H. Abdul Razak

This article reports the results of an investigation on the engineering properties of concrete containing black sugar palm fiber. Three fiber lengths of 15, 25, and 35 mm in four volume fractions, namely 0.2%, 0.4%, 0.6%, and 0.8%, were utilized in this investigation. The values of compressive, flexural, toughness, first crack deflection, first crack toughness, and toughness indices are reported for ages up to 90 days. It was observed that the addition of palm fibers slightly increased the flexural strength of concrete. The incorporation of the fibers had no significant effect on the compressive strength. The mix with 0.8% volume fraction and 35 mm length fiber gave higher toughness and ductility compared to other mixes.


Sign in / Sign up

Export Citation Format

Share Document