Research on Impact Behavior of Reactive Powder Concrete

2010 ◽  
Vol 150-151 ◽  
pp. 779-782
Author(s):  
Qing Xin Zhao ◽  
Zhao Yang Liu ◽  
Jin Rui Zhang ◽  
Ran Ran Zhao

By means of the three-point bending impact equipment, with the measurement of ultrasonic velocity, the impact behavior and damage evolution of reactive powder concrete (RPC) with 0, 1%, 2% and 3% volume fraction of steel fiber were tested. The results showed that steel fiber significantly improved the compressive strength, flexural strength, flexural toughness and impact toughness of RPC matrix. The compressive strength, flexural strength, flexural toughness of RPC with 3% steel fiber increased by 40.1%, 102.1%, and 37.4 times than that of plain concrete, respectively, and simultaneously, the impact toughness of RPC with 3% steel fiber was 93.2 times higher than that with 1% steel fiber. RPC with 2% and 3% steel fiber dosage both had relatively high compressive strength, flexural strength and flexural toughness; however, compared with the sample with 2% steel fiber dosage, the impact toughness of RPC with 3% steel fiber dosage increased by more than 10 times. Therefore, taking economy and applicability into consideration, if we mainly emphasis on the compressive strength, flexural strength and flexural toughness, RPC with 2% steel fiber is optimal. While if impact toughness is critical, RPC with 3% steel fiber would be the best choice.

2020 ◽  
Vol 857 ◽  
pp. 15-21
Author(s):  
Nesreen B. Najib ◽  
Shatha D. Mohammed ◽  
Wasan Z. Majeed ◽  
Nada Mahdi Fawzi A. Jalawi

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the compressive strength varies between (1.2-8.6)% for a period of (1-6) days, respectively. Although there was a decrease in the compressive strength for a state of non-zero volume fraction ratio (1 and 1.5) % varies between (1.0-3.1 and 0.4-1.6) %, respectively, the attained results indicated that gamma ray had no significant effect to reduce the compressive strength of the RPC that’s included micro steel fibers as a volume fraction.


2018 ◽  
Vol 7 (4) ◽  
pp. 2753
Author(s):  
Ibtihal Fadhil ◽  
Ayad K. Kadhem ◽  
Nisreen Salih

Reactive powder concrete is a new concrete that has been used in recent years because of many advantages. The use of reactive powder concrete in structural elements such as beams provides higher compressive strength, higher modulus of elasticity, durable concrete and increasing the concrete ductility, so that the concrete has high resistance against tensile stress. The experimental tests of the reinforced concrete beams under the effects of impact loadings are investigated in this paper. The parameters being adopted in present paper are steel fiber of (1, 1.5 and 2%) by volume, dropped mass and height of drop. The reinforced concrete specimens were tested under impact load by one strike only. The test results indicate that the impact force increased when the compressive strength of concrete increased that when the steel fiber ratio becomes more and the deflection has become less.  


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2948 ◽  
Author(s):  
Stefania Grzeszczyk ◽  
Aneta Matuszek-Chmurowska ◽  
Eva Vejmelková ◽  
Robert Černý

The paper presents the test results of basalt fiber impact on a compressive and flexural strength, resistance to abrasion and porosity of Reactive Powder Concrete (RPC). The reasons for testing were interesting mechanical properties of basalt fibers, the significant tensile strength and flexural strength, and in particular the resistance to high temperatures, as well as a relatively small number of RPC tests performed with those fibers and different opinions regarding the impact of those fibers on concrete strength. The composition of the concrete mix was optimized to obtain the highest packing density of particles in the composite, based on the optimum particle size distribution curve acc. to Funk. Admixture of basalt fibers was used in quantity 2, 3, 6, 8 and 10 kg/m3, length 12 mm and diameter 18 µm. A low water-to-binder ratio, i.e., from 0.24, was obtained through application of a polycarboxylate-based superplasticizer. The introduction of up to 10 kg/m3 of basalt fibers to RPC mix was proved to be possible, while keeping the same w/c ratio equal to 0.24, with a slight loss of workability of the concrete mix as the content of fibers increased. It was found that the increase of the fiber content in RPC to 10 kg/m3, despite the w/c ratio was kept the same, caused reduction of the concrete compressive strength by 18.2%, 7.8% and 13.6%, after 2, 7, and 28 days respectively. Whereas, the flexural strength of RPC increased gradually (maximum by 15.9%), along with the fiber quantity increase up to 6 kg/m3, and then it reduced (maximum by 17.7%), as the fiber content in the concrete was further increased. The reduction of RPC compressive strength, along with the increase in basalt fibers content, leads to the increase of the total porosity, as well as the change in pore volume distribution. The reduction of RPC abrasion resistance was demonstrated along with the increase of basalt fibers content, which was explained by the compressive strength reduction of that concrete. A linear relation between the RPC abrasion resistance and the compressive strength involves a high determination coefficient equal to 0.97.


2011 ◽  
Vol 261-263 ◽  
pp. 192-196 ◽  
Author(s):  
Yan Zhong Ju ◽  
De Hong Wang ◽  
Fei Jiang

Based on experiments of uniaxial compression and flexural experiments, the basic mechanical properties (compressive strength and flexural strength) of reactive powder concrete (RPC) were investigated, the effect of the steel fiber content on mechanical properties of RPC was studied in this work. The resu1ts indicate that the axial compressive strength of RPC had no obvious change with the change of steel fiber content. When the steel fiber content varied from 1.0% to 2.0%, the flexural strength of RPC had no obvious change.When the steel fiber content varied from 2.0% to 5.0%, the flexural strength of RPC increased dramaticlly with the increase of steel fibers content. According to experiment curves, an equation for the compressive stress-strain curve of RPC was deduced with different stee1 fiber content.


Fibers ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 19
Author(s):  
Hadeel K. Awad

The construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical properties is detected in case of 0% addition at burning temperature of 500 °C using sudden cooling to be 63.90%, 55.77% and 53.8% for compressive, splitting tensile, and flexural strength, respectively, while using 1.5% produced a modification in compressive strength, splitting tensile strength, and flexural strength to 6.67%, 4.15%, and 7.00% respectively, and 7.10 kN·mm for the absorbed energy for gradual cooling at 300 °C. From the results, the adopted cooling methods can be ordered according to their negative influence by sudden, foam, and gradual, while the optimum percentage of (Vf) is 1.5% when burning at 300 °C for all methods of cooling. 1.0% is considered the optimum percentage for all burning temperatures that exceed 400 °C using sudden-cooling method.


2014 ◽  
Vol 919-921 ◽  
pp. 1974-1978
Author(s):  
Mei Yan Hang ◽  
Cheng Xiao Sun ◽  
Pei Yu Zhang

The article studies the impact of steel fiber on the performance of lightweight aggregate concrete,including compressive strength, flexural strength, modulus of elasticity and impact toughness. The experimental studies show that steel fiber has little effect on the compressive strength of lightweight aggregate concrete, however, it can improve the pattern obviously. With the increasing of steel fiber content, the flexural strength and impact toughness of concrete increases. With the increasing of steel fiber content ,the elastic modulus of concrete also increases. The studies of this paper provide a certain technical references with the future research of steel fiber reinforced lightweight aggregate concrete.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mingyang Chen ◽  
Wenzhong Zheng

To optimize the main components of reactive powder concrete (RPC) for various curing methods, based on the fluidity and compressive strength, an inclusive experimental research is conducted on 58 different mixture ratios. The results indicate that owing to the increase of the cement strength, the RPC fluidity decreases and the cement strength is not proportional to the compressive strength. The addition of the fly ash and the nano-microbead is an effective way to improve the fluidity, and it is required at the low W/B ratio. However, the influence of the SF grade on the strength and fluidity is almost negligible. By considering the fluidity, strength, and economy of RPC as crucial design factors, SF90 is suggested. The contribution of the steel fiber to the compressive strength cannot be ignored. The upper envelope value of the steel fibers is required for the structure to resist appropriately against the fire. According to the test results, the mixture ratio formula is proposed through considering the characters of different compositions and curing methods. The strength coefficient k1 is introduced to verify the influence of the steel fiber content, and the parameters fb, αa, and αb in the formula are reevaluated. A reasonably good agreement between the calculated strength and those obtained from the tests is reported, except for the case of W/B = 0.16 with P.O.52.5 cement. The basic steps for preparations of different RPC strengths are given, which provide a valuable reference to choose appropriate raw materials and mixture ratio design for different strength values.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Mo Jinchuan ◽  
Ou Zhongwen ◽  
Wang Yahui

The reactive powder concrete (RPC) was used as concrete repair material in this paper. The influence of steel fiber, steel fiber + MgO, and steel fiber + MgO + polypropylene fiber (PPF) on the mechanical properties of RPC repair materials and the splitting tensile strength between RPC and old concrete was studied. Influences of steel fiber, MgO, and PPF on the splitting tensile strength were further examined by using scanning electronic microscopy (SEM) and drying shrinkage test. Results indicated that the compressive and flexural strength was improved with the increasing of steel fiber volume fraction. However, the bonding strength showed a trend from rise to decline with the increasing of steel fiber volume fraction. Although MgO caused mechanical performance degradation of RPC, it improved bonding strength between RPC and existing concrete. The influence of PPF on the mechanical properties of RPC was not obvious, whereas it further improved bonding strength by significantly reducing the early age shrinkage of RPC. Finally, the relationship of drying shrinkage and splitting tensile strength was studied, and the equation between the splitting tensile strength relative index and logarithm of drying shrinkage was obtained by function fitting.


2014 ◽  
Vol 496-500 ◽  
pp. 2402-2406
Author(s):  
Kui He ◽  
Hui Yang ◽  
Fang Fang Jia ◽  
Er Po Wang ◽  
Zhen Bao Lu ◽  
...  

Workability, strength and fracture mechanics of polypropylene macro-fiber reinforced Reactive powder concrete (RPC) were studied in this work. The results showed that the incorporation of macro-fiber could influence the workability of RPC, the slump of RPC decreased with the increasing of macro-fiber content; compressive strength decreased while splitting strength increased with the increasing of macro-fiber, meanwhile the flexural strength invariant. Macro-fiber could strongly enhance the flexural toughness of RPC and changed the failure mode from brittle to ductile; fracture energy tends to increase linearly with the increasing of macro-fiber.


Sign in / Sign up

Export Citation Format

Share Document