High-Temperature Thermoelectric Properties of Cu-Substituted Bi2Sr2Co2OY Oxides

2011 ◽  
Vol 228-229 ◽  
pp. 656-660
Author(s):  
Li Min Zhao ◽  
Wei Fen Jiang ◽  
Hao Shan Hao

Bi2Sr2Co2-xCuxOy (x=0.0, 0.2, 0.4) samples were prepared by solid-state reaction method and the effect of Cu substitution on the high-temperature thermoelectric properties was investigated. The presence of Cu element improved the grain size and the thermoelectric properties increased owing to the simultaneous increase of conductivity and Seebeck coefficients. The optimal thermoelectric performance was obtained in x=0.2 sample and the power factor was two times as large as that in Cu-free sample at 923K.

2011 ◽  
Vol 284-286 ◽  
pp. 2263-2267 ◽  
Author(s):  
Hao Shan Hao ◽  
Qing Lin He ◽  
Li Min Zhao

Co2-xCuxOy (x=0.0, 0.2, 0.4) Samples were prepared by solid-state reaction method and the effect of Cu substitution on the thermoelectric properties was investigated. The presence of Cu element improved the grain size and electrical conductivity, but Seebeck coefficients were reduced by Cu substitution. It was found Cu substitution is an effective way to improve the thermoelectric performance system at high temperature.


2010 ◽  
Vol 105-106 ◽  
pp. 336-338 ◽  
Author(s):  
Hao Shan Hao ◽  
Jin Qin Ye ◽  
Yong Tao Liu ◽  
Xing Hu

Pb- and La-substituted (Bi,Pb)2(Sr,La)2Co2Oy samples were prepared by solid-state reaction method and the effect of element substitution on the high-temperature thermoelectric properties was investigated. It was found that the presence of Pb and La elements improved the thermoelectric properties of the Bi2Sr2Co2Oy system owing to the simultaneous increase of conductivity and Seebeck coefficients. The optimal thermoelectric performance was obtained in Pb and La co-substituted samples and the power factor could reach 2.1×10-4Wm-1K-2 at 1000K.


2015 ◽  
Vol 29 (26) ◽  
pp. 1550154 ◽  
Author(s):  
F. Gao ◽  
Q. L. He ◽  
F. Wu ◽  
D. L. Yang ◽  
X. Hu ◽  
...  

The influence of [Formula: see text] ion sizes on the electrical resistivity, Seebeck coefficients, thermal conductivity and [Formula: see text] values of [Formula: see text] prepared by the solid-state reaction method was investigated from 373 K to 973 K. The electrical resistivity decreases with decreasing [Formula: see text] ion sizes. Both the electrical resistivity and the Seebeck coefficients have a transition at about 630 K. Especially, the transition phenomenon disappears gradually with decreasing [Formula: see text] ion sizes, and is attributed to the oxygen adsorption of [Formula: see text]. The [Formula: see text] values increase with rising temperature or decreasing [Formula: see text] ion sizes. The [Formula: see text] with the smallest [Formula: see text] size has the maximum [Formula: see text] value that reaches 0.1 at 973 K.


2011 ◽  
Vol 228-229 ◽  
pp. 804-808 ◽  
Author(s):  
Hao Shan Hao ◽  
Hai Peng Yu ◽  
Li Min Zhao

Pb- and La-doped (Bi,Pb)2(Ba,La)2Co2Oy ceramics were prepared by solid-state reaction method and the effect of element doping on the thermoelectric characteristics was investigated. Pb and La doping increased the electrical conductivity and transformed the conduction from a metal-like behavior to a semiconducting one. Different from the undoped samples, the values of Seebeck coefficients decreased with the increase of the temperature in the Pb- and La-doped samples. Pb doping in Bi2Ba2Co2Oy system improved the thermoelectric characteristics at high temperature and Pb/La co-doping improved thermoelectric characteristics at low temperature.


2018 ◽  
Vol 6 (41) ◽  
pp. 19967-19973 ◽  
Author(s):  
Zhenyong Cen ◽  
Yu Huan ◽  
Wei Feng ◽  
Yan Yu ◽  
Peiyao Zhao ◽  
...  

Lead-free (1 − x)(0.96K0.46Na0.54Nb0.98Ta0.02O3–0.04Bi0.5(Na0.82K0.18)0.5ZrO3)–xCaZrO3 ((1 − x)(0.96KNNT–0.04BNKZ)–xCZ) piezoelectric ceramics were prepared by the conventional solid-state reaction method.


2020 ◽  
Vol 18 (11) ◽  
pp. 14-18
Author(s):  
Abbas K. Saadon ◽  
Kareem A. Jasim ◽  
Auday H. Shaban

The high temperature superconductor’s compounds are one of the hot spot field of science, due to their applications in industries. Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and Hg0.8Sb0.2Ba2Ca1Cu2O6+δ, were manufactured using a doable-step of solid state reaction method. The samples were sintered at 800 ° C. The transition temperatures Tc are found from electrically resistively by using four probe techniques. The resistivity become zero when the transition temperature Tc(offset) have 131 and 119 K, and the onset temperature Tc(onset) have 139 K for Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and 132 K for Hg0.8Sb0.2Ba2Ca1Cu2O6+δ. Analysis of X-ray diffraction showed a tetragonal structure with lattice parameters changes for all samples.


2017 ◽  
Vol 07 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Gang Liu ◽  
Wentao Jiang ◽  
Jingyong Jiao ◽  
Li Liu ◽  
Ziyang Wang ◽  
...  

Ba[Formula: see text]Sr[Formula: see text]TiO3 ceramics with or without ZnO have been prepared by traditional solid state reaction method. The XRD analysis showed that the doped Zn[Formula: see text] ions diffused into the BST crystal lattice, resulting in the variation of dielectric properties. Especially the dielectric constant at Curie point decreased with doping ZnO content when it is lower than 0.5[Formula: see text]mol%. Due to the promotion of sintering, doping ZnO can enhance the density of ceramics but increase grain size. However, ZnO is a kind of semiconductor and can lead to the decrease in electrical breakdown strength value.


RSC Advances ◽  
2014 ◽  
Vol 4 (22) ◽  
pp. 11360-11366 ◽  
Author(s):  
Yahong Jin ◽  
Yihua Hu ◽  
He Duan ◽  
Li Chen ◽  
Xiaojuan Wang

The blue emitting long persistent phosphor (LPP) Li2ZnGeO4 and green emitting LPP Li2ZnGeO4:Mn2+ were newly prepared by a high temperature solid-state reaction method.


2009 ◽  
Vol 23 (01) ◽  
pp. 87-95 ◽  
Author(s):  
HAOSHAN HAO ◽  
QINGLIN HE ◽  
CHANGQING CHEN ◽  
HONGWEI SUN ◽  
XING HU

Ca 3-x Bi x Co 4 O 9(x = 0.0, 0.3) samples have been prepared at 1223 K by conventional solid-state reaction method. XRD and SEM investigations reveal that c-axis-oriented structure could be formed in Ca 2.7 Bi 0.3 Co 4 O 9 samples, whereas grains in Ca 3 Co 4 O 9 samples distribute randomly. Moreover, Bi doping increases the grain size and relative density of Ca 2.7 Bi 0.3 Co 4 O 9. The electrical conductivity along the ab plane for Ca 2.7 Bi 0.3 Co 4 O 9 is about four times as large as that along the c-axis, but the Seebeck coefficient is almost isotropic, which leads to a remarkable rise of the power factor in ab plane for Ca 2.7 Bi 0.3 Co 4 O 9 compared with untextured Ca 3 Co 4 O 9. The textured structure in Ca 2.7 Bi 0.3 Co 4 O 9 sample should be attributed to the effect of Bi doping.


2015 ◽  
Vol 3 (27) ◽  
pp. 7096-7104 ◽  
Author(s):  
Kai Li ◽  
Mengmeng Shang ◽  
Yang Zhang ◽  
Jian Fan ◽  
Hongzhou Lian ◽  
...  

A series of Ca9Bi(PO4)7:Ce3+,Tb3+,Mn2+phosphors synthesizedviathe high-temperature solid-state reaction method can emit intense tunable color from purple-blue to red including white under UV excitation, which shows their potential application in UV-pumped white-light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document