Hydraulic System Design for Hexagon Workpiece Flipping Equipment

2011 ◽  
Vol 228-229 ◽  
pp. 719-722
Author(s):  
Hong Wang

Workpiece flipping equipment is widely used in hexagon workpiece multi face and work station processing. Hydraulic drive has advantages of easy linear motion achivement, high power quality ratio and rapid dynamic response, etc. It is an essential element of modern mechanical engineering and one of the key technologies of engineering controls. Hydraulic drive system of the hexagon workpiece flipping equipment was designed, the hydraulic system schematic was drawn, its working principle was analysed. The workpiece flipping was successfully achieved by using hydraulic technology, it obtained good results in practical applications.

2011 ◽  
Vol 383-390 ◽  
pp. 1202-1207
Author(s):  
Tao Ping Yan

3201Z-type dump truck is modification desiged by EQ3208GJ dump truck chassis which the technical performance parameters are known, and using a lifting mechanism of air controlled hydraulic system. By analyzing the composition and working principle of air controlled hydraulic system and referring to similar models, the design of the tank, the limiting mechanism and power taker are conducted. By calculating the main technical parameters, including in the performances of the hydraulic cylinder and the hydraulic pump, the dump truck's special oil cylinder HG-E180X780 and gear pump CBT-E563 are selected. By the stability of the piston rod, the system pressure and cars lifting time are checked; the reasonability and safty of the design can be proved.


2012 ◽  
Vol 220-223 ◽  
pp. 836-840
Author(s):  
Tong Jian Wang ◽  
Bo Bo Xi ◽  
Wei Chen ◽  
Chuan Xiang Lv

Proposed wheeled off-road excavator with 2-Dof articulated body, and analyzed the working principle of the 2-Dof articulated body, machine-hydraulic drive system and the key technologies .Through the study of the vehicle drive system matching calculation and the ADAMS simulation of articulated body, the results show that the articulated truck has good passing ability, stability and adaptability on a complex road.


2012 ◽  
Vol 433-440 ◽  
pp. 3852-3857
Author(s):  
Tao Ping Yan

3201Z-type dump truck is modification desiged by EQ3208GJ dump truck chassis which the technical performance parameters are known, and using a lifting mechanism of air controlled hydraulic system. By analyzing the composition and working principle of air controlled hydraulic system and referring to similar models, the design of the tank, the limiting mechanism and power taker are conducted. By calculating the main technical parameters, including in the performances of the hydraulic cylinder and the hydraulic pump, the dump truck's special oil cylinder HG-E180X780 and gear pump CBT-E563 are selected. By the stability of the piston rod, the system pressure and cars lifting time are checked, the reasonability and safty of the design can be proved.


2013 ◽  
Vol 373-375 ◽  
pp. 2132-2135 ◽  
Author(s):  
Lv Chang ◽  
Jun Fei Yao

Electric bicycles as a new means of transportation is gradually rise. this paper introduces hydraulic drive into electric bicycle, avoiding the problems of frequent adjustment and repair, and reducing the noise. Electric hydraulic driving bicycle may be a new road to develop the electric bicycle industry. This paper combines the working principle of electro-hydraulic driving bicycle, determining the performance parameters of electro-hydraulic driving bicycle, and the parameter calculation and selection of components in the hydraulic system.


Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Guoliang Ma ◽  
Kaixian Ba ◽  
Zhiwu Han ◽  
Zhengguo Jin ◽  
Bin Yu ◽  
...  

SUMMARY In this paper, mathematical models of kinematics, statics and inverse dynamics are derived firstly according to the mechanical structure of leg hydraulic drive system (LHDS). Then, all the above models are integrated with MATLAB/Simulink to build the LHDS simulation model, the model not only considers influence of leg dynamic characteristics on hydraulic system but also takes into account nonlinearity, variable load characteristics and other common problems brought by hydraulic system, and solves compatibility and operation time which brought by using multiple software simultaneously. The experimental results show the simulation model built in this paper can accurately express characteristics of the system.


2013 ◽  
Vol 300-301 ◽  
pp. 10-13
Author(s):  
Yuan Hui Li ◽  
Kui Sheng Chen ◽  
Jiang Hong Deng ◽  
Xin Yuan Chen

Rake-car’s driving system of ore reclaimer originally used crank and connecting rod mechanism as driving mechanism. The driving mechanism got some trouble that parts got severe wear and failure rate of mechanism was high. The hydraulic system is used to drive rake car in view of hydraulic driving system’s advantage. By analysis on existing problem of crank and connecting rod mechanism, the actual working load of equipment is tested and the working situation is analysed. The working situation of the hydraulic system is also analysed by computer simulation. By optimization of the hydraulic system design, the final design is determined. The whole system is actually used. It works well.


2021 ◽  
Author(s):  
R.V. Yudin ◽  
◽  
R.N. Puzakov ◽  

During the movement of the tractor on the uneven terrain, there are fluctuations that cause jumps of the working fluid in the hydraulic system and high dynamic loads. The solution to this problem is the use of an energy-saving hydraulic drive with a hydraulic accumulator and a system of aggregates this leads to increased efficiency and increased productivity of skidding grippers. A mathematical model of working processes with an energy-saving hydraulic drive is compiled.


2014 ◽  
Vol 7 (4) ◽  
pp. 150-155
Author(s):  
Ye HUANG ◽  
◽  
Changsheng LIU ◽  
Shiongur Bamed ◽  
◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 242-249 ◽  
Author(s):  
A. T. Rybak ◽  
I. K. Tsybriy ◽  
S. V. Nosachev ◽  
A. R. Zenin

Introduction. The durability and performance of hydraulic machines is determined through life tests. At that, various braking devices (mechanical, electric, hydraulic, etc.) are used for strength loading of the hydraulic motor, as a result of which a significant amount of energy is lost. This can be avoided if the method of rotational motion with energy recovery is used during life tests. This approach is applicable for hydraulic pumps, motors, and hydraulic cylinders.Materials and Methods. A test bench is presented, the design of which provides recreation of the conditions most appropriate for the field operation of hydraulic cylinders. In this case, energy recovery is possible. To solve the research problems, methods of mathematical modeling were used, the basic functional parameters of the proposed design were calculated. The determination of the pressure increment at various points in the hydraulic system is based on the theory of volumetric rigidity. When modeling the motion of the moving elements of the bench hydraulic system, the laws of rotor motion are used.Research Results. In the structure of the test bench, the cylinders in question are located in the pressure main between the hydraulic pump and the hydraulic motor. This enables to significantly reduce the bench itself and to save a significant amount of energy due to its recovery. A basic hydraulic diagram of the test bench for piston hydraulic cylinders is presented, in which the operation of the moving elements of the system is shown. A mathematical modeling of the hydraulic system of the bench is performed. A kinematic diagram of the mechanism for transmitting motion between test cylinders is shown.Discussion and Conclusions. The system of equations presented in the paper shows how the increment of pressure at the selected nodal points of the energy recovery system is determined (in particular, how the increment depends on time, reduced coefficient of volumetric rigidity, operating fluid consumption, and piston areas). The velocities of the hydraulic pistons are determined according to the kinematic scheme of the mechanical transmission of the bench. Thus it can be argued that, thanks to the solution presented in the paper, the life test results of hydraulic cylinders will adequately reflect their operation under rated duties.


Sign in / Sign up

Export Citation Format

Share Document