Concentration of Miglitol on Adsorption Effect of Equilibrium and Kinetics

2011 ◽  
Vol 236-238 ◽  
pp. 899-902
Author(s):  
Jie Bing Zhang ◽  
Xiao Li Zhang ◽  
Hong Ya Li ◽  
Bin Xia Zhao ◽  
Zhu Xiong

Concentrations of miglitol on the adsorptive capacity effect of resin were investigated.The pseudo first and second order equations were used to describe the kinetic process of ion exchange. The results showed that adsorption of miglitol onto resin is fast and can reach approximate equilibrium after 2.5h. Langmuir model is suitable to describe the equilibrium adsorption.By linear fit of the pseudo first and second order equation and comparing the R2value of correlation coefficient, it finds that the R2value of the pseudo second order equation is bigger, and concludes that the ion exchange process is described by the pseudo second order equation.

2016 ◽  
Vol 6 (4) ◽  
pp. 1045-1049
Author(s):  
N. Rajamohan ◽  
R. Rajesh Kannan ◽  
M. Rajasimman

Heavy metal pollution due to the contamination of Selenium above the tolerable limit in the natural environment is a challenging issue that environmental scientists face. This study is aimed at identifying ion exchange technology as a feasible solution to remove selenium ions using 001x7 resin. Parametric experiments were conducted to identify the optimal pH, sorbent dose and speed of agitation. Selenium removal efficiency of 85% was attained at pH 5.0 with 100 mg/L selenium concentration. The increase in resin dose was found to increase removal efficiency. However, metal uptake decreased. The experiments on the effect of concentration proved the negative effect of higher concentrations of selenium on removal efficiency. The ion exchange process was proved to be optimal at an agitation speed of 200 rpm and a temperature of 35 °C. Pseudo second order model was found to fit the kinetic data very well compared to the pseudo-first order model and the pseudo second order rate constant was estimated as 8.725x10-5 g mg-1 min-1 with a solution containing 100 mg/L selenium.


2020 ◽  
Vol 16 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Abdullah M. Asiri ◽  
Nahed S. E. Ahmed

Background: Color effluents generated from the production industry of dyes and pigments and their use in different applications such as textile, paper, leather tanning, and food industries, are high in color and contaminants that damage the aquatic life. It is estimated that about 105 of various commercial dyes and pigments amounted to 7×105 tons are produced annually worldwide. Ultimately, about 10–15% is wasted into the effluents of the textile industry. Chitin is abundant in nature, and it is a linear biopolymer containing acetamido and hydroxyl groups amenable to render it atmospheric by introducing amino and carboxyl groups, hence able to remove different classes of toxic organic dyes from colored effluents. Methods: Chitin was chemically modified to render it amphoteric via the introduction of carboxyl and amino groups. The amphoteric chitin has been fully characterized by FTIR, TGA-DTG, elemental analysis, SEM, and point of zero charge. Adsorption optimization for both anionic and cationic dyes was made by batch adsorption method, and the conditions obtained were used for studying the kinetics and thermodynamics of adsorption. Results: The results of dye removal proved that the adsorbent was proven effective in removing both anionic and cationic dyes (Acid Red 1 and methylene blue (MB)), at their respective optimum pHs (2 for acid and 8 for cationic dye). The equilibrium isotherm at room temperature fitted the Freundlich model for MB, and the maximum adsorption capacity was 98.2 mg/g using 50 mg/l of MB, whereas the equilibrium isotherm fitted the Freundlich and Langmuir model for AR1 and the maximum adsorption capacity was 128.2 mg/g. Kinetic results indicate that the adsorption is a two-step diffusion process for both dyes as indicated by the values of the initial adsorption factor (Ri) and follows the pseudo-second-order kinetics. Also, thermodynamic calculations suggest that the adsorption of AR1 on the amphoteric chitin is an endothermic process from 294 to 303 K. The result indicated that the mechanism of adsorption is chemisorption via an ion-exchange process. Also, recycling of the adsorbent was easy, and its reuse for dye removal was effective. Conclusion: New amphoteric chitin has been successfully synthesized and characterized. This resin material, which contains amino and carboxyl groups, is novel as such chemical modification of chitin hasn’t been reported. The amphoteric chitin has proven effective in decolorizing aqueous solution from anionic and cationic dyes. The adsorption behavior of amphoteric chitin is believed to follow chemical adsorption with an ion-exchange process. The recycling process for few cycles indicated that the loaded adsorbent could be regenerated by simple treatment and retested for removing anionic and cationic dyes without any loss in the adsorbability. Therefore, the study introduces a new and easy approach for the development of amphoteric adsorbent for application in the removal of different dyes from aqueous solutions.


1986 ◽  
Vol 20 (9) ◽  
pp. 1177-1184 ◽  
Author(s):  
Arup K. Sengupta ◽  
Dennis Clifford ◽  
Suresh Subramonian

1985 ◽  
Vol 60 ◽  
Author(s):  
J. D. Barrie ◽  
D. L. Yang ◽  
B. Dunn ◽  
O. M. Stafsudd

AbstractIon exchanged ß“-aluminas display a number of interesting optical properties which suggest that the material is well suited for application as a solid state laser host. Small platelets of Nd3+ Ion exchanged β“-alumina exhibit laser action with gain coefficients many times greater than YAG. The versatility of the ion exchange process enables one to form a wide variety of compounds with different active ions and concentrations, thereby allowing the study of many different effects within a single host crystal.


2012 ◽  
Vol 430-432 ◽  
pp. 941-948 ◽  
Author(s):  
Yong Sheng Shi ◽  
Yu Zhen Shi ◽  
Lin Wang

Studies have been carried out on removal of Se(Ⅵ) from raw water by ion exchange process. The experiment results indicate that employment of strong-base anion exchange resin of 201×7 can receive a desirable result for Se removal. It is particularly true that the removal rate of Se(Ⅵ) can achieve more than 96% when the Se(Ⅵ) concentration in raw water is 100μg/L. This allows selenium concentration of the supply water in full conformity to the quality standard currently available for drinking water. Ion exchange process for Se removal has been proved to be competent for its efficiency, cost effectiveness and easy operation.


Author(s):  
R. L. Brodzinski ◽  
W. K. Hensley ◽  
E. A. Lepel ◽  
M. R. Smith

Sign in / Sign up

Export Citation Format

Share Document