scholarly journals Kinetic Modeling and Effect of Process Parameters on Selenium Removal Using Strong Acid Resin

2016 ◽  
Vol 6 (4) ◽  
pp. 1045-1049
Author(s):  
N. Rajamohan ◽  
R. Rajesh Kannan ◽  
M. Rajasimman

Heavy metal pollution due to the contamination of Selenium above the tolerable limit in the natural environment is a challenging issue that environmental scientists face. This study is aimed at identifying ion exchange technology as a feasible solution to remove selenium ions using 001x7 resin. Parametric experiments were conducted to identify the optimal pH, sorbent dose and speed of agitation. Selenium removal efficiency of 85% was attained at pH 5.0 with 100 mg/L selenium concentration. The increase in resin dose was found to increase removal efficiency. However, metal uptake decreased. The experiments on the effect of concentration proved the negative effect of higher concentrations of selenium on removal efficiency. The ion exchange process was proved to be optimal at an agitation speed of 200 rpm and a temperature of 35 °C. Pseudo second order model was found to fit the kinetic data very well compared to the pseudo-first order model and the pseudo second order rate constant was estimated as 8.725x10-5 g mg-1 min-1 with a solution containing 100 mg/L selenium.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tzan-Chain Lee ◽  
Shumao Wang ◽  
Zonggui Huang ◽  
Zhongxing Mo ◽  
Gangxing Wang ◽  
...  

The potentiality of tea stem for the adsorption of methylene blue (MB) from aqueous phase was investigated. A series of operating factors, including the initial MB concentration, contact time, pH of solution, dose of tea stem, and ionic strength of solution, were conducted to understand the effect of adsorption of MB onto tea stem. Adsorption isotherm, kinetic models, thermodynamic investigation, and regenerability of tea stem were systematically investigated in this study. The experiment results revealed that the removal efficiency decreased with MB concentration and the equilibrium time of adsorption at different initial MB concentrations was approximately at 60 min. The appropriate dose of tea stem powder was found to be 4 g/L. The pHzpc of tea stem was evaluated and was observed to be 6.0 ± 0.2. The removal efficiency increased with pH ranging from 3.0 to 5.0 and remained constantly at the pH range of 5.0–11.0. The pH affected the adsorption because of the repellent power between H+ and dye cation. The ionic strength was found to have a negligible effect on the adsorption. The Langmuir and Temkin isotherm models were found to be the best isotherm models to elucidate the adsorption mechanism between MB and tea stem powder. The maximum adsorption capacity of 103.09 mg/g derived from the Langmuir model was much close to the experimental result. From the kinetic analysis, the pseudo-second-order model was found to be the suitable model to describe the adsorption behavior. The calculated adsorption capacities at different temperatures derived from the pseudo-second-order model ranging from 68.91 to 69.8 mg/g were well close to the experimental data. The intraparticle diffusion of MB molecules into pore structures of tea stem powder is the rate-limiting step for the adsorption process in this study. Evaluation of thermodynamic parameters including changes in enthalpy, entropy, and Gibb’s free energy indicated the adsorption mechanism between MB and tea stem powder was a spontaneous and exothermic process. The regeneration/adsorption experiments indicated that the tea stem powder efficiently remained more than 97% after five cycles using NaOH as a desorbing agent and thus be used for many times. On the basis of experimental results obtained, it is concluded that the tea stem has a considerable potential as a low-cost sorbent for removing MB from the aqueous phase.


2011 ◽  
Vol 236-238 ◽  
pp. 899-902
Author(s):  
Jie Bing Zhang ◽  
Xiao Li Zhang ◽  
Hong Ya Li ◽  
Bin Xia Zhao ◽  
Zhu Xiong

Concentrations of miglitol on the adsorptive capacity effect of resin were investigated.The pseudo first and second order equations were used to describe the kinetic process of ion exchange. The results showed that adsorption of miglitol onto resin is fast and can reach approximate equilibrium after 2.5h. Langmuir model is suitable to describe the equilibrium adsorption.By linear fit of the pseudo first and second order equation and comparing the R2value of correlation coefficient, it finds that the R2value of the pseudo second order equation is bigger, and concludes that the ion exchange process is described by the pseudo second order equation.


2020 ◽  
Vol 20 (7) ◽  
pp. 4540-4548
Author(s):  
Wafia Ghabeche ◽  
Skander Boukhezar ◽  
Kamel Chaoui ◽  
Sihem Benayache ◽  
Hazem Meradi

The objective of this investigation is to use hydrochloric acid (HCl) at different concentration as a chemical treatment for the Algerian diatomite (DE) in order to get it ready for further applications oriented towards pharmaceutical aspects. Commercial diclofenac sodium (DS) is used to study adsorption on DE in aqueous laboratory conditions. It is found that DE contains roughly 60% SiO2 and 13% CaO. Its morphology is characterized by a porous structure composed of several broken and compacted diatomic aggregates, containing cylindrical and alveolus forms of varying diameters, girdle bands and other clayey compounds. The hydrochloric acid treatment is proven to be one attractive choice as it entails a significant raise of SiO2 and facilitates reducing most of impurities. After 10% HCl (DE-10) treatment of crude DE, the amount of SiO2 increased by over 64%. The result showing DS adsorption as a function of time is optimal for DE-10 as the quantity of the absorbed DS on treated DE (qt) reached 60 mg/g and maintained this equilibrium level from 90 up to 120 min. The pseudo second order model has been successfully applied. The quantity of the absorbed DS on treated DE at equilibrium (qe) and the pseudo second order rate constant (k2) for the case DE-10 are found 114.94 mg/g and 1.3 10−4 g mg−1 min−1 respectively.


2012 ◽  
Vol 430-432 ◽  
pp. 941-948 ◽  
Author(s):  
Yong Sheng Shi ◽  
Yu Zhen Shi ◽  
Lin Wang

Studies have been carried out on removal of Se(Ⅵ) from raw water by ion exchange process. The experiment results indicate that employment of strong-base anion exchange resin of 201×7 can receive a desirable result for Se removal. It is particularly true that the removal rate of Se(Ⅵ) can achieve more than 96% when the Se(Ⅵ) concentration in raw water is 100μg/L. This allows selenium concentration of the supply water in full conformity to the quality standard currently available for drinking water. Ion exchange process for Se removal has been proved to be competent for its efficiency, cost effectiveness and easy operation.


2013 ◽  
Vol 367 ◽  
pp. 45-49
Author(s):  
Ying Hong ◽  
Ze Hui Zhong ◽  
You Shi Liu

Chitosan nanoparticles were prepared by crosslinkingusing TPP. SEM showed that chitosan nanoparticles were successfully obtained.The adsorption characteristics of chitosan nanoparticles were evaluated. Theresults demonstrated that chitosan nanoparticles were suitable for adsorbent toremoval Pb2+. The parameters for the adsorption of Pb2+by chitosan nanoparticles were also determined. It was shown that chitosannanoparticles were fit for Langmuir’s isotherm model and that the adsorptionkinetics of Pb2+ described by the pseudo-second-order model could bebest.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840085 ◽  
Author(s):  
Neha V. Nerkar ◽  
Subhash B. Kondawar ◽  
Snehal Kargirwar Brahme ◽  
Yun Hae Kim

In this paper, we report the safe removal of methyl orange (MO) dye from aqueous solution using chemical interaction of dye molecule with polyaniline/zinc oxide (PANI/ZnO) nanocomposite. PANI/ZnO nanocomposite has been prepared by in situ polymerization. PANI/ZnO nanocomposite was found to be the best promising candidate for adsorption of dyes due to more porosities compared to that of pure PANI. In the present investigation, PANI/ZnO nanocomposite was mixed in a solution of MO dye and used for adsorption process. Color removal was studied using UV-Vis spectroscopy and the spectra were recorded for specific time interval and validation of kinetic model has been applied. Absorbance of PANI/ZnO nanocomposite was found to be increased as compared to that of pure ZnO nanoparticles and pure PANI due to synergistic effect. Comparatively, the removal of dye was also found to be more by using PANI/ZnO nanocomposites. In order to evaluate kinetic mechanism the pseudo-first-order model, pseudo-second-order model and intraparticle diffusion models were verified by the linear equation analysis. Adsorption mechanism of pseudo-second-order model was systematically explained for removal of dye using PANI/ZnO nanocomposite. The results clearly demonstrated that the adsorption mechanism gives very novel and green method of removal of hazardous dyes from waste water.


2020 ◽  
Vol 168 ◽  
pp. 00050
Author(s):  
Vadym Korovin ◽  
Yurii Pohorielov ◽  
Yurii Shestak ◽  
Oleksandr Valiaiev ◽  
Jose Luis Cortina

Kinetics of scandium recovery by TVEX containing tributyl phosphate was studied from the clarified leaching solution of salt chlorinator cake. To assess the contribution of each diffusion phase, experimental data were analyzed using a graphic method. To define the contribution of chemical interaction into the scandium extraction process, recovery kinetics was quantitatively described using pseudo-first order, pseudo-second order kinetic models and Elovich equation in linearized form. It was established that recovery kinetics was most accurately described with the pseudo-second-order model.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2295 ◽  
Author(s):  
Souad Rakass ◽  
Hicham Oudghiri Hassani ◽  
Mostafa Abboudi ◽  
Fethi Kooli ◽  
Ahmed Mohmoud ◽  
...  

Nano Molybdenum trioxide (α-MoO3) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored. The removal of MB was significantly affected by pH and temperature and higher values resulted in increase of removal capacity of MB. The removal efficiency of Methylene blue was 100% at pH = 11 for initial dye concentrations lower than 150 ppm, with a maximum removal capacity of 152 mg/g of MB as gathered from Langmuir model. By comparing the kinetic models (pseudo first-order, pseudo second-order and intraparticle diffusion model) at various conditions, it has been found that the pseudo second-order kinetic model correlates with the experimental data well. The thermodynamic study indicated that the removal was endothermic, spontaneous and favorable. The thermal regeneration studies indicated that the removal efficiency (99%) was maintained after four cycles of use. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) confirmed the presence of the MB dye on the α-MoO3 nanoparticles after adsorption and regeneration. The α-MoO3 nanosorbent showed excellent removal efficiency before and after regeneration, suggesting that it can be used as a promising adsorbent for removing Methylene blue dye from wastewater.


2019 ◽  
Vol 17 (1) ◽  
pp. 1043-1049
Author(s):  
Dian Windy Dwiasi ◽  
Mudasir Mudasir ◽  
Roto Roto

AbstractThe Ni-Al-NO3 layered double hydroxide (LDH) compound has been intercalated with benzoate anion through an anion exchange process for amoxicillin drug adsorption. The purpose of this research is to synthesize Ni-Al-NO3, ion exchange with benzoate anion to form Ni-Al-Benzoate, and then applying it as an adsorbent of amoxicillin. The adsorption process was carried out using the batch technique. The materials synthesized in this study were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray ray diffraction (XRD), and Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA). The exchange of benzoate in Ni-Al-Benzoate LDH by amoxicillin was followed by UV-Vis spectrophotometry. The pH, LDH amount, and contact time are optimized. The adsorption of amoxicillin by Ni-Al-Benzoate is fit to the pseudo-second-order kinetics model, with an adsorption capacity of 40 mg/ g. The results showed that anion exchange was successfully carried out between benzoate anion and amoxicillin.


2013 ◽  
Vol 686 ◽  
pp. 296-304 ◽  
Author(s):  
Michael Leo Dela Cruz ◽  
Khryslyn Araño ◽  
Eden May Dela Pena ◽  
Leslie Joy L. Diaz

The release of arsenic to aqueous environment imposes threats to human health. Montmorillonite supported zero-valent iron (ZVI-MMT) is a material with capability of immobilizing arsenic from aqueous environment. The arsenic adsorption efficiency of ZVI-MMT was obtained. In addition, adsorption kinetics of arsenic contaminated water on the material was determined. Arsenic and iron content was quantified by an inductively coupled plasma mass spectrometer (ICP-MS), interplanar distance of the adsorbent was measured by x-ray diffractometer (XRD), and the morphology of the adsorbent was obtained from a transmission electron microscope (TEM). Isotherm data were analyzed using the Langmuir and Freundlich isotherms. The data fitted well to Langmuir isotherm with derived adsorption capacity of 20.1 mg/g. Kinetics data were analyzed using intra-particle model, Elovich equation, pseudo first-, and pseudo second-order models. Elovich equation and pseudo second-order equation fitted the experimental data with pseudo second-order rate constant of 61.2 x 10-4 g/mg-min.


Sign in / Sign up

Export Citation Format

Share Document