Effects of Annealing Parameters on Recrystallization of AZ31 Magnesium Alloy Processed by Continuous Rheo-Extrusion

2011 ◽  
Vol 239-242 ◽  
pp. 15-20
Author(s):  
Ren Guo Guan ◽  
Zhan Yong Zhao ◽  
Fu Rong Cao ◽  
Hong Qian Huang ◽  
Chun Guang Dai ◽  
...  

AZ31 magnesium alloy profiles were prepared by continuous rheo-extrusion, and effects of annealing temperature and time on recrystallization of AZ31 magnesium alloy were investigated. The results reveal that when the profile is annealed in the temperature range from 200°C to 300°C, the moving velocity of grain interface with different dislocation densities on both sides increases with increasing annealing temperature, which is favorable to the formation of crystallized nucleus in the region in which interface sweeps over. As a result, the time required by the accomplishment of recrystallization becomes short. After recrystallization finishes, continuous temperature rise or prolonged holding time result in grain growth. When the profile is annealed at elevated temperature, with the prolongation of holding time, the grain growth rate accelerates obviously, and hence recrystallized microstructure becomes coarse. When the profile is annealed at lower temperature, the grain growth rate becomes small, and the time required by the accomplishment of recrystallization is long, but recrystallized microstructure is fine and homogeneous. When the profile is annealed at 250°C for 4h, average recrystallized grain size is 15μm.

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Zhongtang Wang ◽  
Lingyi Wang ◽  
Lizhi Liu

Microstructure evolution of AZ31 magnesium alloy in annealing process had been investigated by experiment study at heating temperature range of 150°C–450°C and holding time range of 15 min–60 min. The effects of heating temperature and holding time on grain growth had been analyzed. The results presented that the grain size tends to grow up with the increase of holding time at a certain temperature. At a certain holding time, the grain size increased firstly and then decreased at the heating temperature range of 150–250°C. And when heating temperature is higher than 250°C, the grain grows up gradually with the increase of heating temperature. The grain growth model of AZ31 Mg alloy has been established by regression based on the experimental data at temperature of 250–450°C, and the relative error between model calculation results and experimental results is less than 19.07%. Activation energy of grain growth of AZ31 magnesium alloy had been determined.


2014 ◽  
Vol 618 ◽  
pp. 150-153 ◽  
Author(s):  
Zhi Tong Chen ◽  
Fei Lin ◽  
Jie Li ◽  
Fei Wang ◽  
Qing Sen Meng

A study on vacuum diffusion bonding between as-extruded AZ31 magnesium alloy and 7075 aluminum alloy was carried out according to atomic diffusion theory. Recrystallization annealing was used for grain refinement of AZ31 magnesium alloy and 7075 aluminum alloy before the diffusion welding. The quality of the bonding joints was checked by shear test, micro-hardness test and microstructure analysis. Experimental results showed that the welding temperature and holding time have a great effect on the joint shear strength. The maximum of shear strength was 38.41MPa under the temperature of 470°C and the holding time of 60min. The result of micro-hardness measurement showed that the micro-hardness of welded joints was maximum. Three kinds of intermetallic compounds, Mg2A13, MgAl and Mgl7Al12, formed at the interfacial transition zone at 470°C.


2013 ◽  
Vol 631-632 ◽  
pp. 556-561 ◽  
Author(s):  
Sheng Yuan Gao ◽  
Shi Lian Qu ◽  
Yue Yuan ◽  
Bao Qin Fu

The effects of electromagnetic stirring and Al4C3grain refiner on the grain refinement of semi-continuously cast AZ31 magnesium alloy were discussed in this investigation. The results indicate that electromagnetic stirring has effective refining effect on the grain size of AZ31 magnesium alloy under the effect of Al4C3grain refiner. Electromagnetic stirring can “activate” the Al4C3particles, resulting in more heterogeneous nucleation sites for the primary α-Mg grains. But, longer holding time can “inactivate” the Al4C3particles, and the optimal experimental holding time is 60 min in the present investigation. The activated rate of the electromagnetic under the experimental condition ρ2=1.65%.


Author(s):  
Kai Soon Fong ◽  
Ming Jen Tan ◽  
Fern Lan Ng ◽  
Atsushi Danno ◽  
Beng Wah Chua

In this study, an AZ31 magnesium alloy plate was processed by constrained groove pressing (CGP) under three deformation cycles at temperatures from 503 to 448 K. The process resulted in a homogeneous fine grain microstructure with an average grain size of 1.8 μm. The as-processed microstructure contained a high fraction of low-angle grain boundaries (LAGB) of subgrains and dislocation boundaries that remained in the structure due to incomplete dynamic recovery and recrystallization. The material's yield strength was found to have increased from 175 to 242 MPa and with a significant weakening of its initial basal texture. The microstructure stability of the CGP-processed material was further investigated by isothermal annealing at temperature from 473 to 623 K and for different time. Abnormal grain growth was observed at 623 K, and this was associated with an increased in nonbasal grains at the expense of basal grains. The effect of annealing temperature and time on the grain growth kinetics was interpreted by using the grain growth equation,  Dn+D0n=kt, and Arrhenius equation, k=k0 exp (−(Q/RT)). The activation energy (Q) was estimated to be 27.8 kJ/mol which was significantly lower than the activation energy for lattice self-diffusion (QL = 135 kJ/mol) and grain boundary diffusion (Qgb = 92 kJ/mol) in pure magnesium. The result shows that grain growth is rapid but average grain size still remained smaller than the as-received material, especially at the shorter annealing time.


Sign in / Sign up

Export Citation Format

Share Document