The Design of Cooling Water Pipe and Cooling Analysis in Mass Concrete

2011 ◽  
Vol 255-260 ◽  
pp. 3510-3513
Author(s):  
Pan Wu Li ◽  
Qian Qian Si

Inconstruction process of mass concrete is apt to form excessive temperature stress and cause mass concrete cracking, because of its high inner temperature, big internal and external temperature difference. In order to prevent their cracking, in mass concrete of the internal Settings with cooling water pipe cooling is one of the commonly used massive concrete construction method. This paper presents a massive concrete design of cooling water cooling and calculation theory, based on the cooling pipes in concrete heat transfer performance, through the cooling water pipe and concrete heat exchange principle.

2021 ◽  
Vol 9 ◽  
Author(s):  
Fuxian Zhu ◽  
Guorong Chen ◽  
Feng Zhang ◽  
Qingwen Li

Water pipe cooling is mainly used to control temperature in the construction of mass concrete structures. It is important to reveal how to accurately stimulate the temperature field of mass concrete under action of this water pipe cooling. This paper presents a new method for this purpose. In this method, the contact surface of the water pipe and the concrete is used as the heat dissipation surface into the control equation and the composite Multiquadrics radial basis function (MQ-RBF) and low-order linear polynomial combination are used to discrete the spatial domain. The heat dissipation surface of the water pipe is included in the boundary conditions so that there is no need to build the refined water pipe modeling. This new method not only reduces the calculation cost but also ensures calculation accuracy. Through four calculation examples, this paper show that the algorithm has advantages in the numerical simulation of the concrete temperature field with water pipe cooling.


2013 ◽  
Vol 405-408 ◽  
pp. 2739-2742 ◽  
Author(s):  
Zhen Hong Wang ◽  
Shu Ping Yu ◽  
Yi Liu

To solve the problem of cracks developing on thin-walled concrete structures during construction, the authors expound on the causes of cracks and the crack mechanism. The difference between external and internal temperatures, basic temperature difference and constraints are the main reasons of crack development on thin-walled concrete structures. Measures such as optimizing concrete mixing ratio, improving construction technology, and reducing temperature difference can prevent thin-walled concrete structures from cracking. Moreover, water-pipe cooling technology commonly used in mass concrete can be applied to thin-walled concrete structures to reduce temperature difference. This method is undoubtedly a breakthrough in anti-cracking technology for thin-walled concrete structures, particularly for thin-walled high-performance concrete structures. In addition, a three-dimensional finite element method is adopted to simulate the calculation of temperature control and anti-cracking effects f. Results show the apparent temperature controlling effect of water-pipe cooling for thin-walled concrete structures.


2011 ◽  
Vol 295-297 ◽  
pp. 2092-2096 ◽  
Author(s):  
Zhen Yang Zhu ◽  
Sheng Qiang ◽  
Min Zhi Liu ◽  
Hai Bo Wang

Using low placement temperature and proper water pipe cooling water, the cracks are rarely appears in the interior of the dam, but the surface of the dam is prone to cracking. During the construction, the surface of the dam may be wet due to several factors such as creep, maintenance and so on, so the effect of the heat preservation is always been over-estimated. For those concrete blocks constructed in cold season, without proper heat preservation, the cracks are easy to appear soon after construction. For those concrete blocks constructed in hot period, under the influence of air temperature, the temperature of those concrete within about 5.0m of the dam surface are hard to control. So the key point to prevent the dam surface constructed in cold period is to take heat preservation measure suiting the on-the-spot situation. And for those dam blocks constructed in hot period, water cure on the surface of the dam can greatly reduce the risk of dam surface cracking.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Long Liu ◽  
Saisai Yu ◽  
Wentao Xu ◽  
Zhilong Wang

The box girder joint section of the Yangtze River Highway Bridge is taken as the research background, and the finite element software MIDAS/FEA is used to simulate the hydration heat of concrete to the layout of cooling water pipe in building mass concrete. The finite element calculation results are in well agreement with the measured data. On this basis, the influence of changing the diameter and distance of the cooling water pipe, the inlet temperature and the flow rate on the temperature of hydration heat is studied. The results show diameter of the cooling water pipe and inlet temperature have a significant effect on the temperature of hydration heat. The change of water flow rate has little effect on the temperature of hydration heat. It provides a reference for the layout of the same concrete cooling water pipe arrangement.


2013 ◽  
Vol 444-445 ◽  
pp. 849-853
Author(s):  
Jian Hua Cui ◽  
Yong Feng Qi ◽  
Jie Su

Under the action of annual change and sudden drop of air temperature, thermal induced cracking will occur in concrete dam during the operation period. For exploring the temperature control measures for crack prevention, taking a concrete gravity dam section as the research object, sensitivity analyses to the factors which affecting the water-cooling effect are conducted with 3D FEM, some significant suggestions for the water cooling are presented. The results show that, the stresses of the dam surface will decrease to a certain extent after water cooling in the operation period using the cooling water pipe which embedded during construction period, and the cracking risk of the dam will reduce. The study provides a new train of thought for the temperature control and crack prevention of the mass concrete during the operation period.


2012 ◽  
Vol 490-495 ◽  
pp. 2869-2872
Author(s):  
Yi Feng Zheng ◽  
Qun Zhao

Based on the Hu Lu Shan Wan crossing sea bridge, this paper calculated the temperature inside and outside the mass concrete while pouring. Besides, this paper presents the process of calculating and designing of the water-cooling method which could decrease the inside temperatrue of the mass concrete in the aspect of design principle. Thereby, it could solve the crack of concrete from one facet


2020 ◽  
Vol 165 ◽  
pp. 04037
Author(s):  
Zhi-Gang Yang ◽  
Jin-Lan Song ◽  
Yan-Fang Hu ◽  
Kun-Fa Lee

For studying the influence of cooling pipes on the mass concrete construction, the dam is taken an example to build the ANSYS finite element model. The model simulates dam concrete construction based on two projects, one without cooling pipes and the other with cooling water pipes provided. The data comparison and analyzing will be in three aspects: temperature, stress and displacement. The result shows that the cooling pipes not only can indeed reduce the concrete temperature in a short time, making the concrete reach the steady temperature more quickly, but also help to alleviate the concrete temperature stress. However, the reductions of temperature do not make a great influence on the displacement during the construction process.


2011 ◽  
Vol 137 ◽  
pp. 12-15
Author(s):  
Xin Li Bai ◽  
Ze Yu Wu ◽  
Wen Liang Ma ◽  
Dan Fei Wang

Temperature field and stress field of a concrete slab in a ship lock chamber are calculated, considering the influence of layered casting. And the influence of water pipe cooling at the early period of constructing, and at the period after constructing, sunshade, pre-cooled concrete etc are taken into account. The expression of finite difference method considering the effect of water pipe cooling is deducted for temperature analysis. Thermal stress calculation results show that the water pipe cooling at the mid-late period is a comparatively effective measure to reduce tensile stress of chamber mass concrete. And an effective temperature control measure is recommended in summer casting, which is that: sunshade + pre-cooled concrete + water pipe cooling (both at early period and at mid-late period). Mid-late period water pipe cooling must last for three months. Combined with other temperature control measures such as summer cover maintenance, winter cover preservation etc, the concrete cracks can be reduced, and the occurrence of large area run through cracks can be avoided.


Sign in / Sign up

Export Citation Format

Share Document