Stability Analysis of Roof Structure with Steel Tubular Arch-Truss

2011 ◽  
Vol 255-260 ◽  
pp. 587-590
Author(s):  
Sheng Jun Hu

Based on the stability theory, one roof structure with steel tubular arch-truss was taken as a research object. Linear buckling, geometric nonlinear stability and elastic-plastic nonlinear stability were investigated by applying ANSYS finite element software, and the relational curves of critical load-displacement were obtained. The analysis results show that material nonlinear makes obvious influence on the stability of the structure, material nonlinear and geometric nonlinear are taken into account at the same time can make a better understanding of the structural stability performance.

2014 ◽  
Vol 1030-1032 ◽  
pp. 802-806
Author(s):  
Xu Luo ◽  
Xin Sha Fu ◽  
Li Xiong Gu ◽  
Lu Rong Cai

The cable tower is the bearing component of long-span suspension bridges, and its structure is very high and bear large force, which determines the stability and is the key of safety control. As for the height of the main tower of a long-span suspension bridge up to 195.3 m, the finite element software ANSYS is used to establish a three-dimensional finite element model (FEM), and the effects of geometric nonlinearity and material nonlinearity on the stability of the main tower are analyzed. The calculation results show that geometrical nonlinearity and material defects have significant influence on the main tower stability, and the nonlinear stability should be considered under wind load in the design calculation.


2013 ◽  
Vol 351-352 ◽  
pp. 305-308
Author(s):  
Jing Liu ◽  
Hai Wang Li ◽  
Yue Nan Sun ◽  
Xue Feng Shu

The elasto-plastic stability analysis on the steel spatial arch truss with 120m span and 0.2 rise-span ratio is carried out with the finite element program ANSYS. In the analyses, two conditions which are the geometric and material nonlinear, double nonlinear under different initial geometric defects are considered. The results show that the instability modes of arch trusses are all asymmetric instability of plane, and that the buckling load and plastic development of the four arch trusses with L/500, L/400, L/300 and L/200 initial geometric defects are decreased with the increase of different initial geometric defects, and that the axial stress of all web members is about the same, but the value of which does not exceed 235Mpa.


2012 ◽  
Vol 544 ◽  
pp. 194-199
Author(s):  
Di Zhang ◽  
Shui Ping Sheng ◽  
Zeng Liang Gao

Two important parameters of torispherical head that are (interior radius of spherical crown area) and r (interior radius of transition corner) have been optimized by the module of the large general-purpose finite-element software ANSYS, targeting the strength and stability of the head. This paper provides an optimized torispherical head, which improves the stability of the edge of the head with acceptable strength of the head. The procedure is generally applicable as a design tool for optimal design.


2022 ◽  
Vol 9 ◽  
Author(s):  
Chunyan Bao ◽  
Lingtao Zhan ◽  
Yingjie Xia ◽  
Yongliang Huang ◽  
Zhenxing Zhao

The creep slope is a dynamic development process, from stable deformation to instability failure. For the slope with sliding zone, it generally creeps along the sliding zone. If the sliding zone controlling the slope sliding does not have obvious displacement, and the slope has unexpected instability without warning, the harm and potential safety hazard are often much greater than the visible creep. Studying the development trend of this kind of landslide is of great significance to slope treatment and landslide early warning. Taking Xiashan village landslide in Huishan Town, Xinchang County, Zhejiang Province as an example, the landslide point was determined by numerical simulation in 2006. Generally, the landslide is a typical long-term slow deformation towards the free direction. Based on a new round of investigation and monitoring, this paper shows that there are signs of creeping on the surface of the landslide since 2003, and there is no creep on the deep sliding surface. The joint fissures in the landslide area are relatively developed, and rainfall infiltration will soften the soft rock and soil layer and greatly reduce its stability. This paper collects and arranges the rainfall data of the landslide area in recent 30 years, constructs the slope finite element model considering rainfall conditions through ANSYS finite element software, and carries out numerical simulation stability analysis. The results show that if cracks appear below or above the slope’s sliding surface, or are artificially damaged, the sliding surface may develop into weak cracks. Then, the plastic zone of penetration is offset; In the case of heavy rain, the slope can unload itself under the action of rainfall. At this time, the slope was unstable and the landslide happened suddenly.


1977 ◽  
Vol 14 (4) ◽  
pp. 524-530 ◽  
Author(s):  
C. D. Thompson ◽  
J. J. Emery

Conventional stability analyses of a 47 ft (14.3 m) high embankment constructed of clayey silt fill indicated a satisfactory design with 2:1 slopes. However, cracking of the fill and movements of the embankment occurred when its height reached 32 ft (9.8 m). Investigation revealed that, in general terms, the geotechnical profile employed for the stability analysis was satisfactory. There was a localized layer of firm clayey soil at the interface between the fill and natural soil, which coincided with the observed cracks and the zone of high pore pressure.Construction scheduling was critical, and an initial wedge analysis showed that a 17 ft (5.2 m) high berm would ensure adequate safety during completion of the fill. A detailed investigation followed to determine the actual deformation mechanism responsible for the cracking. This included plane strain finite element runs using estimated moduli values. It was concluded that the cracking was caused by ‘spreading’ of plastic material at or near the base of the embankment. This case history illustrates that localized layers of weaker soil can be critical even when construction has been carefully controlled.


Author(s):  
K. Ramesh ◽  
R. G. Kirk

Abstract A PC-based program has been developed which is capable of performing stability analysis and response calculations of rotor-bearing systems. The paper discusses the modeling of rotors supported on active magnetic bearings (AMB) and highlights the advantages in the modeling using the finite element method, over the transfer matrix method. An 8-stage centrifugal compressor supported on AMB was chosen for the case study. The results for the stability analysis, obtained using the finite element program was compared with those obtained by the well established transfer matrix codes. The results of unbalance response, including the effects of sensor non collocation are presented and this demonstrates how an AMB supported rotor can experience a synchronous instability for selected sensor locations and balance distributions.


Author(s):  
Mohamed F. El-Amin ◽  
Jisheng Kou ◽  
Shuyu Sun

In this work, we introduce a theoretical foundation of the stability analysis of the mixed finite element solution to the problem of shale-gas transport in fractured porous media with geomechanical effects. The differential system was solved numerically by the Mixed Finite Element Method (MFEM). The results include seven lemmas and a theorem with rigorous mathematical proofs. The stability analysis presents the boundedness condition of the MFE solution.


2011 ◽  
Vol 110-116 ◽  
pp. 3184-3190
Author(s):  
Necdet Bildik ◽  
Duygu Dönmez Demir

This paper deals with the solutions of lateral heat loss equation by using collocation method with cubic B-splines finite elements. The stability analysis of this method is investigated by considering Fourier stability method. The comparison of the numerical solutions obtained by using this method with the analytic solutions is given by the tables and the figure.


2013 ◽  
Vol 671-674 ◽  
pp. 230-234
Author(s):  
Yu Jun Zuo ◽  
De Kang Zhu ◽  
Wan Cheng Zhu

In order to study the supporting of deep surrounding rock with zonal disintegration tendency, the zonal disintegration phenomenon of deep surrounding rock under three supporting forms is analyzed by the ABAQUS finite element software in this paper, and three supporting forms are un-supporting, bolting and grouting, and combined “Bolting and grouting plus Anchor rope” supporting. The results show that the different effects to zonal disintegration under different supporting forms will occur. Supporting can help to restrain the zonal disintegration of the reinforcement part advantageously, and also lower rupture degree of zonal disintegration and reduce the size of rupture zone. Meanwhile, the stability of surrounding rock is improved. But zonal disintegration may occur outside reinforcement part under greater ground stress. The results are great importance to a better understanding of the deep roadway supporting.


Sign in / Sign up

Export Citation Format

Share Document