Effect of Span Length on the Tensile Properties of Natural Fibers

2011 ◽  
Vol 264-265 ◽  
pp. 445-450 ◽  
Author(s):  
S. Biswas ◽  
Qumrul Ahsan ◽  
Ignaas Verpoest ◽  
Mahbub Hasan

Natural fibers are widely used as “reinforcing agents” in polymer composites. The aim of the current study is to evaluate the effect of span length on the tensile properties of several natural fibers (Vietnamese coir and bamboo and Bangladeshi jute). Tensile testing of jute, bamboo and coir fibers was carried out by varying span length (5, 10, 15, 25 and 35 mm). The Young’s modulus and strain to failure were corrected by using newly developed analytical equations in order to correlate the Young’s modulus and strain to failure of natural fibers. Scanning electron microscopy of the fibers was also carried out. It is clearly observed that the Young’s modulus increased with an increase in span length. Whereas tensile strength and strain to failure decreased with an increase in the span length of single fibers. The correction method resulted in a high Young’s modulus for larger span, while strain to failure found was lower compared to smaller span. This is because larger span length helps to minimize the machine displacement compared to smaller ones. Among all fibers, the Young’s modulus of bamboo fiber was highest, followed by jute and coir respectively. Jute fiber had smoother surface and compact structure compared to other two fibers.

2011 ◽  
Vol 675-677 ◽  
pp. 345-348
Author(s):  
Bao Sheng Ren ◽  
Junji Noda ◽  
Koichi Goda

This paper describes an effect of fluctuation in fiber orientation on the tensile properties of sliver-based green composites. The composites were reinforced with slivers of high-strength natural fibers extracted from plants named curaua. Then a surface optical micrograph of the composites with the fiber fluctuation was obtained. The micrograph was divided into many fine segments, and the fiber orientation angle in each segment was measured. Results show that the tensile strength depends on autocorrelation coefficients expressing the degree of fluctuation in fiber orientation, as well as the fiber orientation angles. However, the Young’s modulus was dependent only on the angles, rather than on autocorrelation coefficients. In addition, a statistical concept was applied to an orthotropic analysis for prediction of the Young’s modulus. The predicted Young’s moduli showed better agreement with the experimental results.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3947
Author(s):  
Ferran Serra-Parareda ◽  
Fabiola Vilaseca ◽  
Roberto Aguado ◽  
Francesc X. Espinach ◽  
Quim Tarrés ◽  
...  

In this study, Young’s modulus of henequen fibers was estimated through micromechanical modeling of polypropylene (PP)-based composites, and further corroborated through a single filament tensile test after applying a correction method. PP and henequen strands, chopped to 1 mm length, were mixed in the presence of maleic anhydride grafted polypropylene (MAPP). A 4 wt.% of MAPP showed an effective enhancement of the interfacial adhesion. The composites were mold-injected into dog-bone specimens and tensile tested. The Young’s modulus of the composites increased steadily and linearly up to 50 wt.% of fiber content from 1.5 to 6.4 GPa, corresponding to a 327% increase. Certainly, henequen fibers showed a comparable stiffening capacity of PP composites than glass fibers. The intrinsic Young’s modulus of the fibers was predicted through well established models such as Hirsch or Tsai-Pagano, yielding average values of 30.5 and 34.6 GPa, respectively. The single filament test performed to henequen strands resulted in values between 16 and 27 GPa depending on the gauge length, although, after applying a correction method, a Young’s modulus of 33.3 GPa was obtained. Overall, the present work presents the great potential for henequen fibers as PP reinforcement. Moreover, relationships between micromechanics models and filament testing to estimate Young’s modulus of the fibers were explored.


2006 ◽  
Vol 21 (1) ◽  
pp. 161-173 ◽  
Author(s):  
S. Bueno ◽  
C. Baudin

The adequacy of instrumented Vickers depth-sensing microindentation to determine Young's modulus of alumina-based ceramics was analyzed. Monophase alumina materials and alumina + 10 vol% aluminium titanate composites, with different microstructures, were tested to determine the effect of microcracking. The load–depth penetration of the indenter curves together with the observation of the imprints by scanning electron microscopy were used to analyze the behavior of the materials. Maximum stiffness was determined from the derivatives of the load-depth curves during unloading. The areas of the imprints measured optically were more representative of the behavior of the materials than the areas calculated from depth-penetration measurements. The formation of microcracks affected the shape of the unloading portion of the curves. Significant differences between the values of Young's modulus determined for different materials and definite relationships between the microstructural parameters of the materials and the Young's modulus were found.


2005 ◽  
Vol 117 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Chung-Seog Oh ◽  
Hak-Joo Lee ◽  
Soon-Gyu Ko ◽  
Shin-Woo Kim ◽  
Hyun-Gyun Ahn

RSC Advances ◽  
2015 ◽  
Vol 5 (41) ◽  
pp. 32217-32226 ◽  
Author(s):  
William R. Newson ◽  
Faiza Rasheed ◽  
Ramune Kuktaite ◽  
Mikael S. Hedenqvist ◽  
Mikael Gällstedt ◽  
...  

Films thermoformed from commercial potato protein concentrate exhibited a constant Young's modulus and increasing strain at break with increasing processing temperature, in contrast to the usually observed behaviour for protein-based materials.


2015 ◽  
Vol 815 ◽  
pp. 69-73 ◽  
Author(s):  
Nik Ahmad Faris Nik Abdullah ◽  
Nik Noriman Zulkepli ◽  
Sam Sung Ting ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
...  

The purpose of this study was to determine the effect of treated Cyperus Odoratus (CY) with sodium hydroxide (NaOH) on the properties of biodegradable plastics made from linear low density polyethylene (LLDPE)/CY blends. Alkali treatments for natural fibers can increased adhesion between the hydrophilic fibers and hydrophobic matric. After CY was treated with 5% NaOH solution, it can be seen that the tensile strength and Young’s modulus of the LLDPE/CY blends significantly increased. Therefore, alkali treatments can be considered in modifying the properties of natural fibers.


2002 ◽  
Vol 750 ◽  
Author(s):  
S. Veprek ◽  
S. Mukherjee ◽  
P. Karvankova ◽  
H.-D. Männling ◽  
J. L. He ◽  
...  

ABSTRACTMeasurements of the hardness and Young's modulus of superhard coatings (HV≥40 GPa) by means of automated load-depth-sensing indentation technique can be subject to a number of errors that are discussed and exemplified here. Only load-independent values of hardness for loads larger than 30–50 mN can be considered reliable when the technique of Doerner and Nix (linear extrapolation of the unloading curve) is used to determine the corrected indentation depth. The results are compared with values of Vickers hardness calculated from the contact area of the remaining plastic deformation which was measured by means of calibrated scanning electron microscope. The values of Young's modulus obtained from the indentation are close to the zero-pressure shear modulus of the coatings as measured by means of Vibrating Reed and surface Brillouin scattering techniques.


2007 ◽  
Vol 1052 ◽  
Author(s):  
Yung-Dong Lau ◽  
Tso-Chi Chang ◽  
Hong Hocheng ◽  
Rongshun Chen ◽  
Weileun Fang

AbstractThis study has successfully demonstrated a novel tensile testing approach to mount the thin film test specimen onto the MEMS instrument using microfabrication process. The MEMS instrument consists of thermal actuator, differential capacitance sensor, supporting spring. The thermal actuator applies tensile load on the test specimen to characterize the Young's modulus and the residual stress of thin films. As compare with the existing approaches, the problems and difficulties resulting from the alignment and assembly of thin film test specimens with the testing instrument can be prevented. Furthermore, the parylene passivation technique of MEMS fabrication process allows the changing of testing film materials easily. In application, the present approach has been employed to determine the Young's modulus and the residual stress of Al films.


Author(s):  
Yung-Dong Lau ◽  
Hong Hocheng ◽  
Rongshun Chen ◽  
Weileun Fang

This study has successfully demonstrated a novel tensile testing approach to mount a thin film test specimen onto a MEMS instrument using microfabrication processes. The MEMS instrument consists of a thermal actuator, differential capacitance sensor, and supporting spring. The thermal actuator applies a tensile load on the test specimen to characterize the Young’s modulus and the residual stress of the thin film. As compare with the existing approaches, the problems and difficulties resulting from the alignment and assembly of a thin film test specimen with the testing instrument can be prevented. Furthermore, the parylene passivation technique with the MEMS fabrication process allows the user to change the test materials easily. In application, the present approach has been employed to determine the Young’s modulus and the residual stress of Au and Al films.


Sign in / Sign up

Export Citation Format

Share Document