Effects of Fiber Orientation Angles and Fluctuation on the Tensile Properties of Sliver-Based Green Composites

2011 ◽  
Vol 675-677 ◽  
pp. 345-348
Author(s):  
Bao Sheng Ren ◽  
Junji Noda ◽  
Koichi Goda

This paper describes an effect of fluctuation in fiber orientation on the tensile properties of sliver-based green composites. The composites were reinforced with slivers of high-strength natural fibers extracted from plants named curaua. Then a surface optical micrograph of the composites with the fiber fluctuation was obtained. The micrograph was divided into many fine segments, and the fiber orientation angle in each segment was measured. Results show that the tensile strength depends on autocorrelation coefficients expressing the degree of fluctuation in fiber orientation, as well as the fiber orientation angles. However, the Young’s modulus was dependent only on the angles, rather than on autocorrelation coefficients. In addition, a statistical concept was applied to an orthotropic analysis for prediction of the Young’s modulus. The predicted Young’s moduli showed better agreement with the experimental results.

2009 ◽  
Vol 79-82 ◽  
pp. 2163-2166
Author(s):  
Bao Sheng Ren ◽  
Junji Noda ◽  
Koichi Goda

This paper describes an effect of fluctuation in fiber orientation on Young’s modulus of the so-called green composites. The composites were reinforced with slivers of high-strength natural fibers extracted from plants named curaua. Then a surface optical micrograph of the composites with the fiber fluctuation was obtained. The micrograph was divided into many fine segments, and the fiber orientation angle in each segment was measured. Then, a new concept which takes account of the fiber orientation angles as a probability distribution, was proposed for prediction of the Young’s modulus. The results showed that the predicted Young’s moduli were in a good agreement with the experimental results.


2011 ◽  
Vol 264-265 ◽  
pp. 445-450 ◽  
Author(s):  
S. Biswas ◽  
Qumrul Ahsan ◽  
Ignaas Verpoest ◽  
Mahbub Hasan

Natural fibers are widely used as “reinforcing agents” in polymer composites. The aim of the current study is to evaluate the effect of span length on the tensile properties of several natural fibers (Vietnamese coir and bamboo and Bangladeshi jute). Tensile testing of jute, bamboo and coir fibers was carried out by varying span length (5, 10, 15, 25 and 35 mm). The Young’s modulus and strain to failure were corrected by using newly developed analytical equations in order to correlate the Young’s modulus and strain to failure of natural fibers. Scanning electron microscopy of the fibers was also carried out. It is clearly observed that the Young’s modulus increased with an increase in span length. Whereas tensile strength and strain to failure decreased with an increase in the span length of single fibers. The correction method resulted in a high Young’s modulus for larger span, while strain to failure found was lower compared to smaller span. This is because larger span length helps to minimize the machine displacement compared to smaller ones. Among all fibers, the Young’s modulus of bamboo fiber was highest, followed by jute and coir respectively. Jute fiber had smoother surface and compact structure compared to other two fibers.


2011 ◽  
Vol 197-198 ◽  
pp. 32-35
Author(s):  
Yun Neng Wang ◽  
Yun Qing Ma ◽  
Shui Yuan Yang ◽  
Xu Liang Liu ◽  
Cui Ping Wang ◽  
...  

The effects of Nb addition on microstructures, Young’s moduli, tensile properties of Ti-30Ta-xNb (x = 21, 24, 27, 30, wt. %) alloys were investigated in this study. The results show that dual phases containing β phase and a little α" martensite were observed when x = 21 and 24, whereas single β phase is present when x = 27 and 30. A minimum Young’s modulus of 52.13 GPa was obtained in Ti-30Ta-21Nb alloy. Ti-30Ta-xNb alloys exhibit high strength-to-modulus ratios, showing their great potentials to develop as new candidates for biomedical applications.


2011 ◽  
Vol 216 ◽  
pp. 773-776 ◽  
Author(s):  
Le Le Gui ◽  
Hong Wei Zhou ◽  
Huai Wen Wang

In order to explore the effect of fiber orientation angle on the Young’s modulus of fiber reinforcement polymer (FRP) composites, from the basic theory of elastic mechanics, a procedure which can be applied to evaluate the elastic stiffness matrix of FRP composite as an analytical function of fiber orientation angle (0-90o), is developed in Mathematica environment. Results indicate that Young’s modulus of the composites strongly depends on the fiber orientation angles. A U-shaped dependency of the Young’s modulus of composites on the inclined angle of fiber is found, which agree well with the experimental results and numerical simulation. The shear modulus was found to have significant effect on the Young’s modulus.


2021 ◽  
pp. 130308
Author(s):  
E.S.N. Lopes ◽  
L.U. dos Santos ◽  
R. Caram ◽  
K.N. Campo

2016 ◽  
Vol 22 (4) ◽  
pp. 841-844 ◽  
Author(s):  
Tye Langston

AbstractCarbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber’s diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young’s modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young’s modulus) matched very well with the manufacturers’ reported values at 20 mm gage lengths, but deviated significantly at other lengths.


Author(s):  
Tapabrata Maity ◽  
Konda Gokuldoss Prashanth ◽  
Özge Balcı ◽  
Grzegorz Cieślak ◽  
Maciej Spychalski ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 693 ◽  
Author(s):  
Myoungjae Lee ◽  
In-Su Kim ◽  
Young Hoon Moon ◽  
Hyun Sik Yoon ◽  
Chan Hee Park ◽  
...  

Metals for biomedical implant applications require a simultaneous achievement of high strength and low Young’s modulus from the viewpoints of mechanical properties. The American Society for Testing and Materials (ASTM) standards suggest two types of processing methods to confer such a mechanical performance to Ti-13Nb-13Zr alloy: solution treatment (ST) and capability aging (CA). This study elucidated the kinetics of CA process in Ti-13Nb-13Zr alloy. Microstructural evolution and mechanical change were investigated depending on the CA duration from 10 min to 6 h. The initial ST alloy possessed the full α′-martensitic structure, leading to a low strength, low Young’s modulus, and high ductility. Increasing CA duration increased mechanical strength and Young’s modulus in exchange for the reduction of ductility. Such a tendency is attributed to the decomposition of α′ martensite into (α+β) structure, particularly hard α precipitates. Mechanical compatibility (i.e., Young’s modulus compensated with a mechanical strength) of Ti-13Nb-13Zr alloy rarely increased by changing CA duration, suggestive of the intrinsic limit of static heat treatment.


2016 ◽  
Vol 852 ◽  
pp. 98-103
Author(s):  
P.S. Samuel Ratna Kumar ◽  
S. John Alexis ◽  
D.S. Robinson Smart

The interest in Multiwall Carbon Nanotube (MWCNT) as reinforcement for Aluminium alloy has been growing considerably because of its significant properties such as high Strength, elastic modulus, flexibility and high aspect ratios which makes the combination for being used in aerospace, automobile and marine applications. This work mainly focuses on the theoretical analysis of Strength and Young’s modulus of MWCNT addition with Aluminium 5083 metal matrix composite for different compositions like 1, 1.25, 1.5 and 1.75 weight %, representing that the MWCNT are effective reinforcement. The predicted value shows that, the addition of MWCNT is increasing the Young’s modulus and Strength for the composite compared to the AA5083 (Aluminium alloy).


Sign in / Sign up

Export Citation Format

Share Document