Assembly of Type I Collagen on PVA Film Induced by Glutaraldehyde Vapor

2011 ◽  
Vol 284-286 ◽  
pp. 1794-1799 ◽  
Author(s):  
Yu Lu Wang ◽  
Xue Pin Liao ◽  
Bi Shi

Type I collagen was isolated from calf skin and its assembly on PVA film induced by glutaraldehyde vapor was investigated. It was found that the collagen molecules were firstly orientationally assembled into collagen fibers under the inducement of glutaraldehyde vapor. Then the collagen fibers could be further aggregated into novel network structure in proper conditions of the induced reaction. The morphology of the assembled collagen fibers was depended on induced time and concentration of collagen. The network arrangement could be obtained after being induced for 72h when collagen concentration was 2.5mg/ml. At higher concentration of collagen (5 mg/ml), the collagen fibers with larger dimension were obtained, but the growth of fibers was almost in one direction.

1981 ◽  
Vol 1 (10) ◽  
pp. 801-810 ◽  
Author(s):  
Karl A. Piez ◽  
Benes L. Trus

A specific fibril model is presented consisting of bundles of five-stranded microfibrils, which are usually disordered (except axially) but under lateral compression become ordered. The features are as follows (where D = 234 residues or 67 nm): (1) D-staggered collagen molecules 4.5 D long in the helical microfibril have a left-handed supercoil with a pitch of 400–700 residues, but microfibrils need not have helical symmetry. (2) Straight-tilted 0.5-D overlap regions on a near-hexagonal lattice contribute the discrete x-ray diffraction reflections arising from lateral order, while the gap regions remain disordered. (3) The overlap regions are equivalent, but are crystallographically distinguished by systematic displacements from the near-hexagonal lattice. (4) The unit cell is the same as in a recently proposed three-dimensional crystal model, and calculated intensities in the equatorial region of the x-ray diffraction pattern agree with observed values.


2020 ◽  
Vol 115 (11) ◽  
pp. 399-408
Author(s):  
Catherine Maidment ◽  
Meekyung Ahn ◽  
Rafea Naffa ◽  
Trevor Loo ◽  
Gillian Norris

Looseness is a defect found in leather that reduces its quality by causing a wrinkly appearance in the finished product, resulting in a reduction in its value. Earlier studies on loose leather using microscopy and Raman spectroscopy reported a change in the collagen structure of loose leather. In this study, proteomics was used to investigate the possible molecular causes of looseness in the raw material, the first time such a study has been carried out. Proteins extracted from two regions of raw hide using two different methods were analysed; those taken from the distal axilla, an area prone to looseness, and those taken from the backbone which is less prone to looseness. Analyses using 1DE-LC-MS/MS showed that although the overall collagen concentration was similar in both areas of the hide, the distribution of the different types of collagen differed.  Specifically, concentrations of type I collagen, and the collagen-associated proteoglycan decorin were lower in samples taken from the distal axilla, symptomatic of a collagen network with excess space seen for these samples using confocal microscopy. This study suggests a possible link between the molecular components of raw cattle hide and looseness and more importantly between the molecular components of skin and skin defects. There is therefore potential to develop biomarkers for looseness which will enable early preventative action.


1982 ◽  
Vol 92 (2) ◽  
pp. 343-349 ◽  
Author(s):  
A Martinez-Hernandez ◽  
S Gay ◽  
E J Miller

Antibodies specific for the alpha 1 (V) chain and native collagen molecules containing the alpha 1 (V) chain have been used in electron immunohistochemical studies of rat kidney to determine the ultrastructural distribution of this class of collagen molecules. In addition, antibodies against type I collagen and whole basement membrane were used as markers for interstitial collagen and authentic basement membranes. Our results indicate that type V collagen is present in the renal interstitium in different forms: in close apposition to interstitial collagen fibers; in the stromal aspect of vascular basement membranes; and as particulate material not bound to other structures. On the basis of these findings, we postulate a binding or connecting function for this collagen type.


1977 ◽  
Author(s):  
L. Balleisen ◽  
R. Timpl ◽  
S. Gay

The reaction of platelets with fibrillar collagen was measured by recording aggregation according to Borns method and by retraction of Ancrod-fibrin clots. These reactions could be completely inhibited by coating the fibrils with stoichiometric amounts of purified antibodies to type I, II or III collagens. The inhibition was specific, i. e. antibodies to type I collagen prevented aggregation by type I collagen but not by type II or III collagen. Comparable amounts ofantibodies to fibrinogen or to serum albumin had no effect on the reaction. The data indicate that platelet aggregation by type I or II collagen fibrils is not due to contamination with type III collagen. The inhibition reaction may be useful for further studies on molecular parameters of the interaction between platelets and collagen fibers.


2014 ◽  
Vol 2 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
Xiaoling Liu ◽  
Yuanxin Jiang ◽  
Hong He ◽  
Wei Ping

2008 ◽  
Vol 69 (11) ◽  
pp. 1481-1486 ◽  
Author(s):  
John G. Hintermeister ◽  
Pamela D. Jones ◽  
Walter E. Hoffmann ◽  
Arthur M. Siegel ◽  
Nikolaos G. Dervisis ◽  
...  

2004 ◽  
Vol 65 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Bianca Carstanjen ◽  
Nicholas R. Hoyle ◽  
Annick Gabriel ◽  
Olaf Hars ◽  
Charlotte Sandersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document