Infiltration Casting and In Situ Fabrication of NbC Particulates – Reinforced Iron Matrix Composites

2011 ◽  
Vol 284-286 ◽  
pp. 269-272
Author(s):  
Li Sheng Zhong ◽  
Yun Hua Xu ◽  
Na Na Wang ◽  
Xiao Jie Liu ◽  
Fang Xia Ye ◽  
...  

Niobium carbide (NbC) particulates -reinforced iron matrix composites were prepared by in- situ fabrication method combining an infiltration casting with a subsequent heat treatment. The microstructure and wear-resistance of NbC particulate-reinforced iron matrix composites were studied using scanning electron microscopy, X-ray diffraction, and wear testing. The results indicate that at 1172 °C for 3 hours NbC particulate-reinforced iron matrix composites were fabricated, and the size of NbC reinforcement was 0.3–3.5 μm. The relative wear resistance of the composites was 5.4 times higher than that of gray cast iron under a 20 N load. This was achieved at 22 % NbC volume fraction. Wear of the composites manifests as grooves, broken carbide particulates and some micro-cracks.

2013 ◽  
Vol 652-654 ◽  
pp. 64-68 ◽  
Author(s):  
Jing Lai Tian ◽  
Fang Xia Ye ◽  
Li Sheng Zhong ◽  
Yun Hua Xu

In-situ production of (Fe,Cr)7C3 particulate bundles-reinforced iron matrix composites were prepared by infiltration casting between Cr wires and white cast iron at 1200°C plus subsequent heat treatment. The composites prepared under different heat treatment time were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), macrohardness test and pin-on-disc wear resistance test. The results show that the composite is mainly consist of (Fe,Cr)7C3 carbides and γ-Fe. The area of the particulate bundles gradually increases with the increase of heat treatment time, the microstructure evolved from eutectic to hypoeutectic, and the morphologies of the reinforcements present chrysanthemum-shaped, granular and intercrystalline eutectics, respectively. The (Fe,Cr)7C3 particulate bundles reinforced composite has high macrohardness and excellent wear resistance under dry sliding wear testing conditons.


2012 ◽  
Vol 602-604 ◽  
pp. 456-459
Author(s):  
Jing Lai Tian ◽  
Fang Xia Ye ◽  
Li Sheng Zhong ◽  
Yun Hua Xu

In-situ production of (Fe,Cr)7C3 particulate bundles -reinforced iron matrix composite was prepared by infiltration casting between Cr wires and white cast iron at 1200°C plus subsequent heat treatment. The composites under different heat treatment times were comparatively characterized by scanning electron microscopy (SEM) and pin-on-disc wear resistance tests. The results show that the area of the particle bundles gradually increases with the heat treatment time increasing, and the chemical compositions change from eutectic to hypoeutectic, the morphologies of the reinforcements present chrysanthemum-shaped, granular and intercrystalline eutectics. Under 5 N loads, the composites appear excellent wear resistance, which is 36 times for the reference sample.


2011 ◽  
Vol 284-286 ◽  
pp. 273-276
Author(s):  
Li Sheng Zhong ◽  
Yun Hua Xu ◽  
Xin Cheng Liu ◽  
Fang Xia Ye ◽  
Jing Lai Tian ◽  
...  

The method of infiltration casting plus heat treatment process employing chromium wires and cast iron applied to in-situ synthesized (Fe,Cr)7C3 particulates bundle reinforced iron matrix composites. The phase analysis, microstructure, microhardness and wear-resistance of composite were observed and measured. The results show that it is possible to fabricate (Fe,Cr)7C3 particulates bundle reinforced iron matrix composite produced by this technology, and a special structure which called particulates bundle was fabricated. (Fe,Cr)7C3 particulates bundle were distributed in the forms of granular, lath-shaped and hexagon-shaped in the particulates bundle. The macrohardness of particulates bundle was 52 HRC, and the relative wear resistance of the composites is 2.3—23 times higher than that of the cast iron.


2012 ◽  
Vol 217-219 ◽  
pp. 71-74
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Shu Yong Jiang ◽  
Hong Cheng

Iron matrix composite reinforced with VC reinforcements was produced by in situ synthesis technique. The microstructure of the composites was characterized by X-ray diffraction and scanning electron microscopy. The micrographs revealed the morphology and distribution of the reinforcements. The results show that the composite consists of VC carbide as the reinforcing phase and α-Fe as the matrix. The distribution of spherical VC particulates in iron matrix is uniform, and the matrix microstructure of Fe-VC composite is pearlite.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1438-1443 ◽  
Author(s):  
ZHENTING WANG ◽  
LILI CHEN ◽  
XIANYOU ZHANG

A metal matrix composite coating reinforced by ZrC - ZrB 2 particulates has been successfully fabricated utilizing the in situ reaction of Zr , B 4 C and Fe pre-placed mixed powders by gas tungsten arc welding (GTAW) cladding process. Various volume fraction of ZrC - ZrB 2 particulates composite coatings were produced through cladding different weight ratios of Zr + B 4 C (30%, 50%, 70%) to improve the wear resistance of AISI1020 steel substrate. The Microstructure of the coating was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrum (EDS), meantime microhardness and wear resistance at room temperature of the composite coating were examined by means of Microhardness Tester and Wear Tester, respectively. The results show that the main phases of the composite coating obtained by GTAW are ZrC , ZrB 2 and α- Fe , ZrC exhibits hexahedron and petal shapes, ZrC - ZrB 2 compound presents acicular and clubbed forms. With the increase of content of Zr + B 4 C , the maximum volume fraction of ZrC - ZrB 2 particulates can reach 16.5%, microhardness is up to 1300HV, and wear resistance is about twenty times higher than that of AISI1020 steel substrate.


2016 ◽  
Vol 848 ◽  
pp. 38-42 ◽  
Author(s):  
Na Na Zhao ◽  
Yun Hua Xu ◽  
Ke Song ◽  
Liu Liu Shen ◽  
V.E. Ovcharenko

Tantalum carbide (TaC) gradient composites were fabricated via in-situ fabrication method from the tantalum plate and gray cast iron. The morphology, phase constituents, micro-hardness, and relative abrasion resistance of the composites were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-hardness tester and abrasive wear testing machine. The surface layer, which was ~160μm thick, was dense ceramic layer composed by ~90% submicron TaC particulates. The highest micro-hardness value of the dense ceramic layer was 13.84 GPa. In the sub-layer, the gradient distribution of TaC particulates reflected in the volume fraction decreased from 90% to 0%. While the micro-hardness value decreased from 10.81 GPa to 4.10 GPa. The metallurgical combination of the interface between the composites and matrix was perfect. The wear resistance of TaC reinforced iron matrix surface gradient composites increased significantly.


2012 ◽  
Vol 217-219 ◽  
pp. 114-118 ◽  
Author(s):  
Xun Yin Zhang ◽  
Gui Rong Li ◽  
Ting Wang Zhang ◽  
Lei Cao ◽  
Hong Ming Wang ◽  
...  

Al2O3,Al3Ti and Al3Zr particles reinforced 7055 aluminium matrix composites were fabricated via melt reaction method. The volume fraction is controlled at about 4-5%. After extrusion and solution-aging heat treatment the sample was prepared for deep cryogenic treatment, The microstructure and evolution of mechanical properties of (Al3Ti+Al3Zr)p/7055 composites were analyzed using optical microscopy(OM),scanning electronic microscopy(SEM) and X-ray diffraction(XRD). Some θ(Al2Cu) phases with nanometer size precipitate in the inner grain. As some grains preferred orient the intensity of some main diffraction peaks increase. Compared with those of as-cast and squeezed states the micro hardness has increased by 16.8% and 10.0% separately.


2015 ◽  
Vol 1120-1121 ◽  
pp. 559-563
Author(s):  
Chong Wang ◽  
Fang Xia Ye ◽  
Li Sheng Zhong ◽  
Ying Lin Yan ◽  
Yu Jun Lai ◽  
...  

In this study, the (Fe,Cr)7C3 particles strengthened gradient composite was produced by in situ synthesis process with subsequent heat treatment from gray cast iron (HT300) and high purity chrome plate. The microstructure, phase composition and wear resistance of the composite were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and scratch tester. The results showed that the thickness of the gradient layer was about 758 μm after heat treatment at 900 °Cfor 4 h. And it can be divided into three areas depending on microstructure. The outermost layer which was ~60 μm of thickness, was the dense ceramic layer with high volume fraction of (Fe,Cr)7C3 ~90%. No obvious grain boundaries were observed. The subsurface layer was the particles dispersed layer, which was ~525 μm of thickness, with the volume fraction of (Fe,Cr)7C3 decreased to 70%. The lowermost layer was ferrite, with about 173 μm thickness. A good metallurgical bond generated between the composite layer and matrix. The depth and the width of surface scratch increased with the raising loads from 0 to 100 N, and the cracks mainly included micro-crack, tiny dens crack, mixture crack and through-wall crack. The (Fe,Cr)7C3 particles were broken and scraped when the load exceeded 80 N.


2011 ◽  
Vol 335-336 ◽  
pp. 80-85 ◽  
Author(s):  
Jing Wang ◽  
Yi Chao Ding ◽  
Hong Cheng ◽  
Yi San Wang

TiC particulates reinforced iron matrix surface composite was produced by cast technique and in-situ synthesis technique. The surface composite was investigated from thermodynamics, microstructure, wear-resistance and oxidation-resistance. The results show TiC particles whose volume fraction is about 40% exhibit fine size in iron matrix on the surface composite. An excellent metallurgy-bond is observed between the surface composite and the gray iron. Fe-TiC surface composite shows good oxidation-resistance at 900°C and great wear-resistance under condition of dry sliding.


Sign in / Sign up

Export Citation Format

Share Document