Effect of Nano-Graphite on Friction Performance of Cu-Based Friction Material

2011 ◽  
Vol 284-286 ◽  
pp. 905-908 ◽  
Author(s):  
Jian Hua Du ◽  
Yuan Yuan Li ◽  
Xiao Hui Zheng

The Cu-based friction materials with nano-graphite were prepared through powder metallurgy technology. The microstructure and friction performance were studied through scan electronic microscope (SEM) and friction tester, respectively. The results indicate that coefficient of the Cu-based friction materials with 2 wt% nano-graphite is high and stable. Comparing with the friction materials without n-C, the wear resistance and heat resistance of the friction materials with nano-graphite has been improved by 11 % and 25 %, respectively. The nano-graphite particles will reduce the abrasive wear and enhance the wear resistance of the Cu-based friction materials.

2011 ◽  
Vol 311-313 ◽  
pp. 473-476
Author(s):  
Jian Hua Du ◽  
Jian Guo Han ◽  
Cheng Fa Xu

The Cu-based friction materials with nano-AlN (n-AlN) and nano-graphite (n-C) were prepared by powder metallurgy technology, respectively. The microstructures and friction performance were studied through scanning electron microscope (SEM) and friction tester rig, respectively. The results indicate that the n-AlN and n-C particles can enhance the properties of Cu-based friction materials remarkably. Compared with the friction materials without any nanometer materials, the wear resistance of the friction materials with n-AlN and n-C has been improved by 25 % and 11 %, respectively. The heat resistance of the materials with n-AlN and n-C has been improved 18 % and 25 %, respectively. The n-AlN and n-C particles can reduce the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2011 ◽  
Vol 694 ◽  
pp. 413-417
Author(s):  
Jian Hua Du ◽  
Yan Zang ◽  
Xiao Ying Zhu

The Cu-based friction materials with nano-AlN (n-AlN) particles were prepared by powder metallurgy technology. The friction performance of the friction materials was investigated through test rig. The microstructure and worn morphology were studied through scanning electron microscopy (SEM). The results indicate that the coefficient of the Cu-based friction materials with 0.75 wt % n-AlN is high and stable. Comparing with the traditional friction materials without n-AlN, the wear resistance and heat resistance of the friction materials with n-AlN has been improved by 25 % and 18 %, respectively. The n-AlN particles can reduced the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2010 ◽  
Vol 97-101 ◽  
pp. 1134-1137
Author(s):  
Jian Hua Du ◽  
Jian Guo Han ◽  
Jiang Ping Tu ◽  
Cheng Fa Xu

The Cu-based friction material with Ni coated nanometer SiO2 (Ni/n-SiO2) particles was prepared by the powder metallurgy technology. Friction properties of the friction materials were evaluated by a friction tester. The microstructure and worn morphology were characterized by optical microscope (OM) and scanning electric microscope (SEM). The results indicate that the microstructure is uniform. The Ni/n-SiO2 particles can enhance the wear ability of Cu-based friction materials. The wear rate of the friction material with Ni/n-SiO2 is 6.58 times of that without Ni/n-SiO2. The main wear mechanisms are abrasive wear and adhesive wear, and Ni/n-SiO2 particles can reduce the abrasive wear and adhesive wear.


2021 ◽  
Vol 871 ◽  
pp. 170-175
Author(s):  
Hao Li ◽  
Bo He

To prepare a kind of Fe-Cu-based friction material with good friction performance and wear resistance, and apply it to the brake structure of automobile machinery, the powder metallurgy method is used to prepare the friction materials in the standard with 4% Ni, 4% Mo and 2% Sn as the auxiliary material, SiC, Al2O3, and zircon sand as the basic friction material, 8% graphite and 3% MoS2 as the lubricating component. Meanwhile, 50% Fe and 20% Cu is used for the preparation of friction materials. The friction and wear resistance can be increased by increasing the carbon fiber content of 0-8% concentration of the material. The results show that the friction coefficient of the Fe-Cu-based friction material is relatively gentle after the addition of 2% carbon fiber, and the compactness peaks, reaching 93.3%. Its shear strength and impact strength peak, which are 37.42Mpa and 6.7J/cm2 respectively. 4% carbon fiber material with a hardness of 120.2 HV is the hardest one, followed by 2% carbon fiber material with a hardness of 118.1 HV. Added with 2% carbon fiber, the abrasion amount of the friction-based material is 0.0027 g at room temperature and-0.0008 g at 400°C after 60 minutes respectively. With all indicators considered, the result shows that the friction performance and wear resistance of Fe-Cu-based friction materials can be increased by adding 2% carbon fiber during the preparation of basic friction materials.


2015 ◽  
Vol 818 ◽  
pp. 61-64 ◽  
Author(s):  
Norbert Radek ◽  
Jozef Bronček ◽  
Peter Fabian ◽  
Jacek Pietraszek ◽  
Krzysztof Antoszewski

The paper is concerned with the performance properties of electro-spark deposited coatings, which were determined basing on microstructural and roughness analysis and application tests. The studies were conducted using of the tungsten carbide-ceramic electrodes produced by the powder metallurgy hot pressing route. The anti-wear coatings were electro-spark deposited over C45 carbon steel by means of an EIL-8A. These coatings are likely to be applied to increase the abrasive wear resistance of tools and machine parts.


2017 ◽  
Vol 889 ◽  
pp. 19-24 ◽  
Author(s):  
Danuwat Pupan ◽  
Chakrit Suvanjumrat ◽  
Watcharapong Chookaew

In the present work, the development of flyash-based friction composites for replacing asbestos material was systematically proposed. In order to solve the high-testing cost and time consuming problem in design formulation process, the mechanical properties of composites were first investigated with regarding to the contents of phenolic resin, friction modifiers and aramid fibers. Friction performances were continually tested with the samples optimized mechanical properties. When considering the results of mechanical testing, it was observed that the elastic modulus and compressive strength decreased with increasing resin fractions in the corresponding test ranges. On the other hand, an addition of friction modifiers and fiber contents can be contributed the mechanical strength. In the friction performance results, an addition of 2.5 wt% fibers showed enhancing of friction coefficient and decreasing of wear resistance at elevated temperature ranges of 100 oC to 200°C. Conversely, the composite filled with 5.0 wt% aramid fiber presented the stability of friction efficient in ranges of 0.56-0.57 and also gave better wear resistance lower than 0.39×10-7 cm3/N.m.


Author(s):  
Can Cogun ◽  
Ziya Esen ◽  
Asim Genc ◽  
Ferah Cogun ◽  
Nizami Akturk

The main aim of this study is to produce new powder metallurgy (PM) Cu-B4C composite electrode (PM/(Cu-B4C)) capable of alloying the recast workpiece surface layer during electric discharge machining process with boron and other hard intermetallic phases, which eventually yield high hardness and abrasive wear resistance. The surface characteristics of the workpiece machined with a PM/(Cu-B4C) electrode consisted of 20 wt% B4C powders were compared with those of solid electrolytic copper (E/Cu) and powder metallurgy pure copper (PM/Cu) electrodes. The workpiece surface hardness, surface abrasive wear resistance, depth of the alloyed surface layer and composition of alloyed layers were used as key parameters in the comparison. The workpiece materials, which were machined with PM/(Cu-B4C) electrodes, exhibited significantly higher hardness and abrasive wear resistance than those of machined with the E/Cu and PM/Cu. The main reason was the presence of hard intermetallic phases, such as FeB, B4C (formed due to the boron in the electrode) and Fe3C in the surface layer. The improvement of the surface hardness achieved for steel workpiece when using PM/(Cu-B4C) electrodes was significantly higher than that reported in the literature. Moreover, the machining performance outputs (workpiece material removal rate, electrode wear rate and workpiece average surface roughness (Ra)) of the electrodes were also considered in this study.


2010 ◽  
Vol 152-153 ◽  
pp. 1616-1619
Author(s):  
Bai Yang Lou ◽  
Pei Hua Li ◽  
Le Guo Li

The main causes of segment failure of diamond saw blade are studied in this paper. The segment material, the microstructure and the wear resistance of saw blade material were studied with scan electronic microscope, energy disperse spectroscopy, hardness meter, optical microscope. The results shows that the addition of alloying elements could refine grains, improve the holding force of matrix to diamond, enhance wear resistance of matrix to diamond, and decrease wear coefficient about 20%.


2011 ◽  
Vol 287-290 ◽  
pp. 2987-2990 ◽  
Author(s):  
Feng Shang ◽  
Hai Xia Zhou ◽  
Bin Qiao ◽  
Hua Qiang Li ◽  
Yi Qiang He

With the speed up of the train, higher performance demands are put forward to the materials which have friction function. The friction materials produced by power metallurgy technology have a lot of advantages, such as good wear resistance, better thermal conductivity, bearing high lord, work reliably and so on. So they are used widely in the fields such as auto industry, aerospace and so on. The application of metal powder metallurgy technology in preparation friction materials of railway vehicles was researched in this paper, such as brake-shoe, brake lining of train braking, pantograph slide of electric locomotive, electrify boots slider of the maglev train and so on. This kind of friction material has superior performance and better prospects.


2021 ◽  
Vol 4 (4) ◽  
pp. 89-93
Author(s):  
Leonid Kondratev ◽  
Nikolai Jujukin

The article presents an analysis and comparison of friction elements consisting of Ferodo and retinax with asbestos-rubber friction material 143-63 and 8-45-62 in the nodes and brakes of forging and pressing machines operated at the factories of the forest and woodworking industry. In Russia, widely used friction materials Ferodo and retinax in the clutches and brakes of operating machines no longer satisfy consumers in many cases due to their low strength and wear resistance, which began to limit the performance of friction units. The analysis showed that the use of friction asbestos-rubber materials of grades 143-63 and 8-45-62 in the nodes and brakes of forging and pressing machines operated at the factories of the forest and woodworking industry, will dramatically increase both the productivity of machines and their performance, and also makes it possible to significantly reduce the cost of maintenance and repair of forging and pressing equipment.


Sign in / Sign up

Export Citation Format

Share Document