Dimension Optimization Design of the Stewart Platform in FAST

2011 ◽  
Vol 308-310 ◽  
pp. 2110-2113 ◽  
Author(s):  
Rui Yao ◽  
Wen Bai Zhu ◽  
Qing Ge Yang

China is now building the largest single dish radio telescope in the world in Guizhou province, which is called Five-hundred meter Aperture Spherical radio Telescope (FAST). A Stewart platform is introduced in FAST as an accuracy adjustable mechanism for feed receivers. The main purpose of this paper is to discuss dimension optimization design method of the Stewart platform based on three optimization objective functions. The optimization objective functions can reflect the operability and accuracy of the Stewart platform, and optimization design flow is presented according to the important degree of the three optimization objectives. Finally, a set of optimized parameters is obtained, and the study in this paper provides a basis for the coming optimization the feed support system for FAST in the next step.

2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Xiaoqiang Tang ◽  
Rui Yao

China is now building the world’s largest single dish radio telescope in Guizhou province, which is called Five-hundred meter Aperture Spherical radio Telescope (FAST). The main purpose of this paper is to present an effective dimensional design method on the six-cable driven parallel manipulator of FAST. Sensitivity design method is adopted for the six-cable driven parallel manipulator of FAST. Cable has the capability to bear tension but not compression, so that cable driven parallel manipulator may not be controlled as expected if tension of one cable is small or zero. Therefore, for dimensional design of the six-cable driven parallel manipulator, three functions to evaluate tension performance were proposed. The tension performance functions can reflect the uniformity of cable tension and controllability of the six-cable driven parallel manipulator. According to the sensitivity design method and tension performance evaluating functions, a set of optimized dimensional parameters is calculated for constructing the six-cable driven parallel manipulator of FAST. In order to verify the optimization design result, a similarity model of the six-cable driven parallel manipulator was set up in Beijing. A serial of experiments shows that tension performance of the six-cable driven parallel manipulator satisfies the system’s requirement. More importantly, it provides a theoretical reference for further study on dimensional design of a cable driven parallel manipulator with large span.


Author(s):  
Fan Zhang ◽  
Shouqi Yuan ◽  
Qiang Fu ◽  
Bo Hu ◽  
Yi Tao ◽  
...  

Aiming at the problems of low efficiency, easily overload and having humps of the TS100–200 centrifugal pumps, four impellers are designed with different blade curves to improve the performances of the pumps. Non-overload design method is adopted for parameters selection of impellers. The 3-D models and the 1.61 million structure grids were generated by Pro/E and ICEM respectively. After the boundary conditions of velocity inlet, outflow in the outlet and no-slip wall were specified, and the flow model was complemented with the standard k-ε model by using the commercial software CFX 12.1. The distributions of pressure, turbulence kinetic energy and streamlines in four impellers are obtained during simulation, as well as their hydraulic performances. The wrap angle φ is a critical parameter to the blade shape. Impeller-2 with appropriate wrap angle φ shows good hydraulic characteristics and excellent inner flow patterns, and it is produced for experiments by prototyping rapidly. The test results are in accordance with the simulating results. The head of impeller-2 is 5% higher than the design parameter at most and the efficiencies are nearly 6% higher than the efficiencies of the prototype pump at the design flow rate QR. The test results also show a good non-overload performances. The results prove that it is an effective and reliable method to the optimal design of centrifugal pumps with medium-high specific speed.


2011 ◽  
Vol 130-134 ◽  
pp. 270-273
Author(s):  
Hua Zhu ◽  
Yong Zhang

In view of the great fluctuation on objective functions which cause constraints dissatisfied, robust design is applied to the vehicle divided steering linkage optimization problem. A robust model is established by considering the kinematic pair clearance and structural error both in the objective functions and constrains. Optimum results show that,the design method can effectively guarantee the kinematics precision of steering mechanism and the transmission stability.


2005 ◽  
Vol 42 (5) ◽  
pp. 1375-1375 ◽  
Author(s):  
Shinkyu Jeong ◽  
Mitsuhiro Murayama ◽  
Kazuomi Yamamoto

Zootaxa ◽  
2019 ◽  
Vol 4658 (1) ◽  
pp. 183-188
Author(s):  
DAXING YANG ◽  
GUCHUN ZHOU ◽  
MAOFA YANG ◽  
XIANJIN PENG

Clubiona Latreille, 1804 comprises 503 species across the world, of which 122 species were reported from China. Nearly one-third of Chinese species have been described with single-sex (World Spider Catalog, 2018). Twenty-eight species have been reported from Guizhou Province (Wang et al. 2015; Wu et al. 2015; Li & Lin 2016; Yu et al. 2017; Wang et al. 2018; Zhang et al. 2018).


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2002 ◽  
Vol 124 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Gang Liu ◽  
Zhongqin Lin ◽  
Youxia Bao

In the tooling design of autobody cover panels, design of drawbead will affect the distribution of drawing restraining force along mouth of dies and the relative flowing velocity of the blank, and consequently, will affect the distributions of strain and thickness in a formed part. Therefore, reasonable design of drawbead is the key point of cover panels’ forming quality. An optimization design method of drawbead, using one improved hybrid optimization algorithm combined with FEM software, is proposed in this paper. First, we used this method to design the distribution of drawbead restraining force along the mouth of a die, then the actual type and geometrical parameters of drawbead could be obtained according to an improved drawbead restraining force model and the improved hybrid optimization algorithm. This optimization method of drawbead was used in designing drawing tools of an actual autobody cover panel, and an optimized drawbead design plan has been obtained, by which deformation redundancy was increased from 0% under uniform drawbead control to 10%. Plastic strain of all area of formed part was larger than 2% and the minimum flange width was larger than 10 mm. Therefore, not only better formability and high dent resistance were obtained, but also fine cutting contour line and high assembly quality could be obtained. An actual drawing part has been formed using the optimized drawbead, and the experimental results were compared with the simulating results in order to verify the validity of the optimized design plan. Good agreement of thickness on critical areas between experimental results and simulation results proves that the optimization design method of drawbead could be successfully applied in designing actual tools of autobody cover panels.


Sign in / Sign up

Export Citation Format

Share Document