Research on the Hydrology Telemetry System of Poyang Lake Based on GPRS

2011 ◽  
Vol 311-313 ◽  
pp. 1319-1322
Author(s):  
Xuan Zeng ◽  
Zhen Yu Tu ◽  
Yong Li Ma

TThe paper mainly discuses the design and application of the hydrology telemetry system based the GPRS technology. Owing to the low power consuming CPU and application of GPRS, the telemetry system realizes the data acquisition, remote control and data communication; it plays an important role in the accurate monitoring and control of Poyang Lake

Author(s):  
Dhanya. T

ZigBee is an IEEE 802.15.4 standard for information interchanges with business and purchaser gadgets. It is composed around low-control utilization permitting batteries to keep going forever. The ZigBee standard gives system, security, and application bolster administrations working on top of the IEEE 802.15.4 Medium Access Control (MAC) and Physical Layer (PHY) remote standard. It utilizes a suite of innovations to empower adaptable, self-arranging, self-mending systems that can oversee different information movement designs. ZigBee is an ease, low-control, remote lattice organizing standard. The ease permits the innovation to be broadly sent in remote control and observing applications, the low power-use permits longer an existence with little batteries, and the cross-section systems administration gives high dependability and bigger range.ZigBee has been created to take care of the developing demand for able remote systems administration between various low power. In industry ZigBee is being utilized for cutting-edge robotized assembling, with little transmitters in each gadget on the floor, taking into consideration correspondence between devices to a focal PC. This new level of communication allows finely-tuned remote observing and control.


2012 ◽  
Vol 253-255 ◽  
pp. 705-715 ◽  
Author(s):  
Mohamed Elbanhawi ◽  
Milan Simic

This paper presents one application of industrial robots in the automation of renewable energy production. The robot supports remote performance monitoring and maintenance of salinity gradient solar ponds. The details of the design, setup and the use of the robot sampling station and the remote Data Acquisition (DAQ) system are given here. The use of a robot arm, to position equipment and sensors, provides accurate and reliable real time data needed for autonomous monitoring and control of this type of green energy production. Robot upgrade of solar ponds can be easily integrated with existing systems. Data logged by the proposed system can be remotely accessed, plotted and analysed. Thus the simultaneous and remote monitoring of a large scale network of ponds can be easily implemented. This provides a fully automated solution to the monitoring and control of green energy production operations, which can be used to provide heat and electricity to buildings. Remote real time monitoring will facilitate the setup and operations of several solar ponds around cities.


2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 3073-3081
Author(s):  
Fen Peng

To solve the inaccurate measurement of the traditional thermal energy network, the paper designs a thermal energy network monitoring and control system based on GPS and Ti3367 wireless transmission and reception based on the IoT. First, the paper designs the monitoring and control system?s overall function and topology, including the management layer?s complex functions, the data aggregation layer, and the data acquisition layer. The paper then designs the system?s hardware structure based on the IoT, including the connection design of the hardware circuit structure diagram of the data aggregation layer and the data acquisition layer. Finally, the paper realizes the system?s software flow design, including system initialization and wireless data receiving and sending flow design.


Author(s):  
L. VENKATESAN ◽  
A.D. JANARTHANAN ◽  
S. GOWRISHANKAR ◽  
R. ARULMOZHIYAL

Today's Industrial Control Applications are done by Remote Process only. Lab VIEW Software plays major role in Industrial Monitoring and control systems. In this paper i am going to discuss about Lab View based induction motor drive control system. It is One of the most common applications required in remote control and monitoring. Drive control system has various types of controller, in order to perform some actions such as control the speed, forward and reverse turning direction of the motor. This approach can be done by Lab VIEW programming, and with the rise of the technology, Ethernet module will be used in order to achieve the remote control system. Lab VIEW is a human machine interfaces design software that is user friendly. It can be easily communicate with different hardware.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Mostafa Monowar ◽  
Mohammed Basheri

The rapid proliferation of low-power wireless devices enables the industrial users to improve the productivity and safety of the plants as well as efficient management of the system. This can be achieved through significant increase in data collection, remote monitoring, and control of the plants and promoting the development of industrial Internet of Things (IoT) applications. However, the industrial environment is typically harsh causing high link quality variations and topology changes. The wireless devices used in this environment are also resource constrained in terms of energy, memory, and processing power. In spite of their low-power and lossy nature, these networks demand provisioning of differentiated services for various industrial applications having diverse quality of service (QoS) requirements. Considering the unique characteristics of low-power and lossy networks (LLN), routing for low-power and lossy networks (RPL) is devised which was standardized by IETF in 2012. To meet the demand of diverse traffic, RPL supports multiple instances in a single network. This paper proposes MI-RPL, a multi-instance solution of RPL for industrial low-power and lossy networks (LLNs). MI-RPL defines four instances for four distinct traffic classes of industrial monitoring applications in terms of delay and reliability. MI-RPL also introduces composite routing metrics and proposes an objective function (OF) to compute the most suitable path for each instance. The performance of MI-RPL is investigated through simulations that exhibit MI-RPL has better delay and packet delivery performance for delay- and reliability-constrained traffic along with lower energy consumption compared to the standard RPL.


2014 ◽  
Author(s):  
Ling Zhenghong ◽  
Zhang Weihong ◽  
Xu Youlin ◽  
Wang Qingyong ◽  
Wang Xiaoxiao

2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000103-000111
Author(s):  
Jeff Watson ◽  
Maithil Pachchigar ◽  
Ross Bannatyne ◽  
Clay Merritt ◽  
Christopher Conrad ◽  
...  

Abstract In recent years there has been an increasing selection of commercially available electronic components specified for very high temperature (200C+) operation, driven by the needs of harsh-environment applications such as oil and gas exploration/production, aerospace, heavy industrial, and automotive. However, there remains a significant technical challenge to integrate these components into reliable, high performance systems. We previously presented a complete reference design of a precision multichannel sensor data acquisition and control system rated to 200C, including characterized hardware, firmware, and software. The design is based around low power 16 bit SAR ADCs and an ARM® Cortex®-M0 processor and is optimized for high resolution and high throughput measurements while maintaining low power and a small footprint. In this paper we present the test results of this system over temperature. The reference platform is available off the shelf, including hardware design files, processor firmware source code, and PC software for data logging and display, providing engineers a rapid development tool for prototyping and a faster path to production for complex harsh-environment applications.


2013 ◽  
Vol 418 ◽  
pp. 20-24
Author(s):  
Yu Zhen Yang ◽  
Chang Sheng Ai ◽  
Kevin Lee

In order to complete the complex operation in the dangerous environment and improve the efficiency and accuracy of industrial production. WiFi based remote control system platform is composed by the controlled mobile robot and control terminal such as PC. They communicate with each other through wireless network. The mobile robot constructs of four wheel drive. Microcontroller, sensor, wireless routing module, serial server and network camera are in the robot. Control terminal includes PC, control handle and other equipments. Using a proven and reliable wireless bridge, each network device can realize network communication with others. Based on the TCP/IP protocol, using socket programming technology, data communication can be achieved. Video capture uses the network camera. Through the test of the platform, bilateral operation with real-time haptic and video feedback are achieved. At the same time according to the real-time environmental information feedback, control terminal realizes the effective remote monitoring in the controlled end.


Sign in / Sign up

Export Citation Format

Share Document