Modeling of Pressure Drop in a 3-D Network Ceramic Diesel Particulate Filter

2011 ◽  
Vol 311-313 ◽  
pp. 1924-1929
Author(s):  
Xu Dong Liu ◽  
Xiao Guo Bi

Diesel Particulate Filters (DPFs) provide probably the most effective means of trapping the exhaust emitted particulates from diesel engines. Three-dimension network ceramic filters become a promising alternative to the conventional wall flow filters, since they are effective in filtering small sized particles and provide a large specific surface area for catalytic coating. A mathematical model of pressure drop for a three-dimension network ceramic DPFs is developed. The model calculates the pressure drop of a filter as a function of the geometric filtering properties, operating conditions and structure of trapping. The calculated pressure drops of a filter agree well with the experimental results. The pressure drop of DPFs increases linearly with increasing trap length, and there is a nonlinear relationship between the exhaust gas mass flow rate and pressure drop. For optimized traps, the pressure drops are much lower than those of the filters with a unitary trap structure.

Author(s):  
Alexander Sappok ◽  
Victor W. Wong

Diesel particulate filters (DPFs) have seen widespread use in on- and off-road applications as an effective means for meeting increasingly stringent particle emission regulations. Over time, incombustible material or ash, primarily derived from metallic additives in the engine lubricant, accumulates in the DPF. Ash accumulation leads to increased flow restriction and an associated increase in pressure-drop across the particulate filter, negatively impacting engine performance and fuel economy and eventually requiring periodic filter service or replacement. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. The results of this work show ash accumulation and distribution in the DPF as a dynamic process with each stage of ash accumulation altering the filter’s pressure-drop response. Through a combined approach employing targeted experiments and comparison with the existing knowledge base, this work further demonstrates the significant effect ash deposits have on DPF pressure-drop sensitivity to soot accumulation. Ash deposits reduce the available filtration area, resulting in locally elevated soot loads and higher exhaust gas velocities through the filter, altering the conditions under which the soot is deposited and ultimately controlling the filter’s pressure-drop characteristics. In this study, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully controlled exhaust conditions. The ash loading system was coupled to the exhaust of a Cummins ISB diesel engine, allowing for accelerated ash loading and DPF performance evaluation with realistic exhaust conditions. Following DPF performance evaluation, the filters were subjected to a detailed post-mortem analysis in which key ash properties were measured and quantified. The experimental results, coupled with the ash property measurements, provide additional insight into the underlying physical mechanisms controlling ash properties, ash/soot interactions, and their effects on DPF performance.


Author(s):  
Alexander Sappok ◽  
Victor W. Wong

Diesel particulate filters (DPF) have seen widespread use in on- and off-road applications as an effective means for meeting increasingly stringent particle emissions regulations. Over time, incombustible material or ash, primarily derived from metallic additives in the engine lubricant, accumulates in the DPF. Ash accumulation leads to increased flow restriction and an associated increase in pressure drop across the particulate filter, negatively impacting engine performance and fuel economy, and eventually requiring periodic filter service or replacement. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. The results of this work show ash accumulation and distribution in the DPF as a dynamic process with each stage of ash accumulation altering the filter’s pressure drop response. Through a combined approach employing targeted experiments and comparison with the existing knowledge base, this work further demonstrates the significant effect ash deposits have on DPF pressure drop sensitivity to soot accumulation. Ash deposits reduce the available filtration area, resulting in locally elevated soot loads and higher exhaust gas velocities through the filter, altering the conditions under which the soot is deposited and ultimately control the filter’s pressure drop characteristics. In this study, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions. The ash loading system was coupled to the exhaust of a Cummins ISB diesel engine, allowing for accelerated ash loading and DPF performance evaluation with realistic exhaust conditions. Following DPF performance evaluation, the filters were subjected to a detailed post-mortem analysis in which key ash properties were measured and quantified. The experimental results, coupled with the ash property measurements, provide additional insight into the underlying physical mechanisms controlling ash properties, ash/soot interactions, and their effects on DPF performance.


2019 ◽  
pp. 146808741987457 ◽  
Author(s):  
Jun Zhang ◽  
Yanfei Li ◽  
Victor W Wong ◽  
Shijin Shuai ◽  
Jinzhu Qi ◽  
...  

Diesel particulate filters are indispensable for diesel engines to meet the increasingly stringent emission regulations. A large amount of ash would accumulate in the diesel particulate filter over time, which would significantly affect the diesel particulate filter performance. In this work, the lubricant-derived ash effects on diesel particulate filter pressure drop, diesel particulate filter filtration performance, diesel particulate filter temperature field during active regeneration, and diesel particulate filter downstream emissions during active regeneration were studied on an engine test bench. The test results show that the ash accumulated in the diesel particulate filter would decrease the diesel particulate filter pressure drop due to the “membrane effect” when the diesel particulate filter ash loading is lower than about 10 g/L, beyond which the diesel particulate filter pressure drop would be increased due to the reduction of diesel particulate filter effective volume. The ash loaded in the diesel particulate filter could significantly improve the diesel particulate filter filtration efficiency because it would fill the pores of diesel particulate filter wall. The diesel particulate filter peak temperature during active regeneration is consistent with the diesel particulate filter initial actual soot loading density prior to regeneration at various diesel particulate filter ash loading levels, while the diesel particulate filter maximum temperature gradient would increase with the diesel particulate filter ash loading increase, whether the diesel particulate filter is regenerated at the same soot loading level or the same diesel particulate filter pressure drop level. The ash accumulation in the diesel particulate filter shows little effects on diesel particulate filter downstream CO, total hydrocarbons, N2O emissions, and NO2/NO x ratio during active regeneration. However, a small amount of SO2 emissions was observed when the diesel particulate filter ash loading is higher than 10 g/L. The ash accumulated in the diesel particulate filter would increase the diesel particulate filter downstream sub-23 nm particle emissions but decrease larger particle emissions during active regeneration.


2019 ◽  
Vol 22 (1) ◽  
pp. 50-63
Author(s):  
Christian Zöllner ◽  
Onoufrios Haralampous ◽  
Dieter Brüggemann

Understanding the variation of soot deposit properties in diesel particulate filters is necessary for their real-life modeling and onboard control. In this study, the effect of exhaust mass flow rate and particle agglomerate size on the soot layer permeability and density was investigated experimentally and analyzed using a well-validated model. A bare and a coated diesel particulate filter were loaded at five different engine operating points, specially selected to explore these effects in a heavily used part of the diesel engine map. Particle emissions were characterized in terms of particle agglomerate size distribution and primary particle diameter, while soot layer permeability and density were estimated indirectly by fitting the model to the pressure drop recordings. To this end, an automatic calibration procedure was applied to obtain values in a consistent and repeatable manner. The results showed considerable variation in both permeability and density. Furthermore, some trends could be identified after depicting the particle characterization data and soot layer properties in contour plots. Increased permeability appeared at the engine operating point with high flow rate and large particle agglomerate size. Lower density was obtained at the operating points with large particle agglomerate diameter.


Author(s):  
Rui Fukui ◽  
Yuki Okamoto ◽  
Masayuki Nakao

As a way of reducing the amount of particulate matter (PM) contained in the exhaust gas, diesel particulate filter (DPF) is widely used. To keep the condition of DPF normal and effective, estimation of the amount of PM deposits in the DPF is important. The estimation is mainly conducted based on the value of pressure drop across the DPF. Occasionally, the value of the pressure drop rises suddenly and it leads to overestimation of the amount of PM deposits. In order to elucidate the cause of the sudden pressure drop increase phenomenon, this paper first reveals the engine operating conditions which invoke this phenomenon. The authors also have developed a visualization method to realize the wide-perspective internal observation of the DPF. The observation experiment has been conducted with a commercial engine and DPF under the revealed conditions. Experimental results make clear that the phenomenon is caused by PM deposit layer collapse and channel plugging.


2011 ◽  
Vol 147 (4) ◽  
pp. 62-68
Author(s):  
Leonid ZAIGRAYEV ◽  
Yury SHEKHOVTSOV ◽  
Oleg IGNATOV

The paper presents the design procedure and results of computational and theoretical research of passive regeneration of the diesel soot filter with a catalytic coating at different operation diesel modes. As the parameters of regeneration the accumulation rate of the filter, burning rate of soot and the maximum filter temperature have been selected. The equations for parameters represent a function of engine speed and its power, flow and temperature of the exhaust gases, and the mass of soot accumulated in the filter.


2018 ◽  
Vol 22 (5) ◽  
pp. 2053-2064
Author(s):  
Maria Orihuela ◽  
Aurora Gomez-Martin ◽  
Jose Becerra-Villanueva ◽  
Javier Serrano-Reyes ◽  
Francisco Jimenez-Espadafor ◽  
...  

This paper presents the results of a preliminary experimental study to assess the performance of biomorphic silicon carbide when used for the abatement of soot particles in the exhaust of Diesel engines. Given its optimal thermal and mechanical properties, silicon carbide is one of the most popular substrates in commercial diesel particulate filters. Biomorphic silicon carbide is known for having, be-sides, a hierarchical porous microstructure and the possibility of tailoring that microstructure through the selection of a suitable wood precursor. An experimental rig was designed and built to be integrated within an engine test bench that allowed to characterizing small lab-scale biomorphic silicon carbide filter samples. A particle counter was used to measure the particles distribution before and after the samples, while a differential pressure sensor was used to measure their pressure drop during the soot loading process. The experimental campaign yielded promising results: for the flow rate conditions that the measuring devices imposed (1 litre per minute; space velocity = 42,000 L/h), the samples showed initial efficiencies above 80%, pressure drops below 20 mbar, and a low increase in the pressure drop with the soot load which allows to reach almost 100% efficiency with an increase in pressure drop lower than 15%, when the soot load is still less than 0.01 g/L. It shows the potential of this material and the interest for advancing in more complex diesel particle filter designs based on the results of this work.


Author(s):  
Rui Fukui ◽  
Yuki Okamoto ◽  
Masayuki Nakao

As a way of reducing the amount of Particulate Matter (PM) contained in the exhaust gas, Diesel Particulate Filter (DPF) is widely used. To keep the condition of DPF normal and effective, estimation of the amount of PM deposits in the DPF is important. The estimation is mainly conducted based on the value of pressure drop across the DPF. Occasionally, the value of the pressure drop rises suddenly and it leads to overestimation of the amount of PM deposits. In order to elucidate the cause of the sudden pressure drop increase phenomenon, this paper firstly reveals the engine operating conditions which invoke this phenomenon. The authors also have developed a visualization method to realize the wide-perspective internal observation of the DPF. The observation experiment has been conducted with a commercial engine and DPF under the revealed conditions. Experimental results make clear that the phenomenon is caused by PM deposit layer collapse and channel plugging.


Author(s):  
A M Williams ◽  
C P Garner ◽  
J G P Binner

Gel-cast ceramic foams potentially offer a more robust configurable alternative filtration medium to monolithic wall flow filters (WFFs) for the reduction in particulate matter (PM) emissions from diesel internal combustion engines. The fundamental back pressure and filtration efficiency characteristics of gel-cast ceramic foam diesel particulate filters (DPFs) have been investigated. Methodology is developed for the first time that allows the calculation of the effect of local PM loading on the pressure drop characteristics from experimental data without problems caused by the non-uniform PM loading in the filter that can be applied to all depth bed filtration media. The back pressure and filtration efficiency relationships were used to develop graphical design spaces to aid development of application-specific DPFs. Effects of PM distribution on the pressure drop of the filter are presented. Filters with a non-even distribution of PM were found to have lower pressure drops than filters with an evenly distributed PM for the same average specific PM loadings. The predictions showed that gel-cast ceramic foams can achieve comparable back pressure, filtration volume, and PM holding capacity with WFFs with a lower filtration efficiency of about 80 per cent. The model demonstrated that greater than 90 per cent filtration efficiency can be achieved with filter volumes of about 0.6 times the volume of a WFF with a lower PM holding capacity.


Sign in / Sign up

Export Citation Format

Share Document