Thermodynamic Analysis of the Extension of Solid Solubility of the Cu-Cr System Processed by Mechanical Alloying

2011 ◽  
Vol 311-313 ◽  
pp. 392-395 ◽  
Author(s):  
Kun Yu Shi ◽  
Tao Shen ◽  
Li Hong Xue ◽  
Chun Hao Chen ◽  
You Wei Yan

The nanocrystalline Cu-5wt.%Cr alloy powders were prepared by mechanical alloying. The structural changes were characterized by X-ray diffraction (XRD) technique. A thermodynamic analysis was carried out to predict the change in the solubility limit of this system. It was found that the energy resulting from the MA process is sufficient to increase the solid solubility of immiscible Cr-Cu system. The solid solubility may be extended up to 5 wt.% Cr in Cu after 20 h milling. The formation of the supersaturated solid solution leads to the decrease of Cu lattice parameter. However, it decomposes with the further increase of the milling time, which leads to the increase of Cu lattice parameter.

2013 ◽  
Vol 873 ◽  
pp. 217-220
Author(s):  
Min Xu ◽  
Qun Jiao Wang

The paper has described the formation of nanocrystalline Mn80Bi20powders by mechanical alloying and studied the changes of structure and magnetic properties of the powders during the process of ball milling by using X-ray diffraction and saturation magnetization σsmeasurements. The solid solubility of bismuth in manganese increases with milling time and tends to a stable value after 80h milling. The σsof Mn80Bi20increases abruptly with milling time at the early stage and begins to decrease after 15h. At the time of 15h, the σsreaches a maximum, which is about 7Am2/kg. The result shows an interesting information that the antiferromagnetic Mn and the diamagnetic Bi produce ferromagnetic Mn80Bi20in process of mechanical alloying.


2009 ◽  
Vol 283-286 ◽  
pp. 494-498 ◽  
Author(s):  
Ali Mostaed ◽  
Ehsan Mostaed ◽  
Ali Shokuhfar ◽  
H. Saghafian ◽  
Hamid Reza Rezaie

The study of mechanical alloying (MA) process on the immiscible Al–Cu systems having positive heats of mixing has been investigated by the earlier researchers. However, a comprehensive understanding of the diffusion phenomenon during the mechanical alloying process is still far from complete. The effects of milling time and impact force, defined as the ball-to-powder weight ratio (BPR), on the elemental diffusion during mechanical alloying process of Al-4.5wt%Cu were evaluated in the current work. X-ray diffraction results showed that increasing the milling time and impact force led to increasing the dislocation as because of increasing the micro-strain, lattice parameter and decreasing the crystallite size. As a result of this, the diffusion rate was enhanced. The interpretation of data resulted have been discussed in details.


2019 ◽  
Vol 391 ◽  
pp. 82-87
Author(s):  
R. Dabouz ◽  
Meriem Bendoumia ◽  
Lounes Belaid ◽  
Mohamed Azzaz

In the equilibrium processing methods the system Al-C does not show any solid solubility which means that carbon is not soluble in aluminum. In this work an investigation of mechanical alloying on system Al-C was presented to force the dissolution. Using different techniques such as the X-ray diffraction and scanning electron microscopy (SEM), it was proved the force of dissolution by studying the specters for different milling time and by flowing the evolution during annealing into a DSC. Furthermore, morphology of phases has been studied.


2016 ◽  
Vol 38 ◽  
pp. 114-123
Author(s):  
A. El Mohri ◽  
A. Guittoum ◽  
K. Taibi ◽  
M. Azzaz

The mechanical alloying (MA) of elemental powder mixtures of Fe90Mg10 (atomic ratio of 79.67:20.33) was performed in an argon atmosphere using a planetary ball mill process. The alloy formation and the different physical properties were investigated as a function of milling time, t (in the 0–54h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), and Mössbauer spectroscopy (MS). The formation of the solid solution α-Fe (Mg) started after 4 h of milling. The Mg peaks are completely missing. XRD results also indicated that when the milling time increases, the lattice parameter increases, whereas the grain size decreases and the mean level of microstrains increase. The powder particle morphology was observed by SEM at different stages of milling. The Mössbauer spectra were fitted with two sextets corresponding to the crystalline body centered cubic (bcc) Fe phase and a second sextet which represents supersaturated solid solutions of Mg in (α-Fe). The appearance and the increase in intensity of the second sextet 17, 66 % at (12 h) to 50 % (54 h) with t corresponding to the dissolved Mg in the (α-Fe). This may indicate that the interfacial region effect increases with milling time due to the grain size reduction and to the disordered state of the interfacial region.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


SPIN ◽  
2017 ◽  
Vol 07 (02) ◽  
pp. 1750002 ◽  
Author(s):  
M. Hemmous ◽  
A. Guittoum

We have studied the effect of the silicon concentration on the structural and hyperfine properties of nanostructured Fe[Formula: see text]Six powders ([Formula: see text], 20, 25 and 30[Formula: see text]at.%) prepared by mechanical alloying. The X-ray diffraction (XRD) studies indicated that after 72[Formula: see text]h of milling, the solid solution bcc-[Formula: see text]-Fe(Si) is formed. The grain sizes, [Formula: see text]D[Formula: see text] (nm), decreases with increasing Si concentration and reaches a minimum value of 11[Formula: see text]nm. We have found that the lattice parameter decreases with increasing Si concentration. The changes in values are attributed to the substitutional dissolution of Si in Fe matrix. From the adjustment of Mössbauer spectra, we have shown that the mean hyperfine magnetic field, [Formula: see text]H[Formula: see text] (T), decreases with increasing Si concentration. The substitutional dependence of [Formula: see text]H[Formula: see text] (T) can be attributed to the effect of p electrons Si influencing electrons d of Fe.


2012 ◽  
Vol 496 ◽  
pp. 379-382
Author(s):  
Rui Song Yang ◽  
Ming Tian Li ◽  
Chun Hai Liu ◽  
Xue Jun Cui ◽  
Yong Zhong Jin

The Cu0.81Ni0.19 has been synthesized directly from elemental powder of nickel and copper by mechanical alloying. The alloyed Cu0.81Ni0.19 alloy powders are prepared by milling of 8h. The grain size calculated by Scherrer equation of the NiCu alloy decreased with the increasing of milling time. The end-product was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM)


2020 ◽  
Vol 1002 ◽  
pp. 12-20
Author(s):  
Tarik T. Issa ◽  
Sadeer M. Majeed ◽  
Duha S. Ahmed

Elements of high purity (99.999) ,were used to prepare the alloy , Bi ,Sn,Zn and Cu .Two types alloy Bi – Sn – Zn and Bi – Sn – Cu were prepared by mechanical alloying technique (MA) .Annealing at 100 °Cfor 8 hours was applied for the resulting alloys . X-ray diffraction and differential scanning colorimetriy were tested for the two types of alloy before and after annealing. The best results was noticed in the ternary alloythat prepared at 4 hours milling time ,and annelid at 100 °C, for 8 hours ,under static air.


2011 ◽  
Vol 672 ◽  
pp. 157-160
Author(s):  
Ionel Chicinaş ◽  
Viorel Pop ◽  
Florin Popa ◽  
Virgiliu Călin Prică ◽  
Traian Florin Marinca ◽  
...  

The formation of quaternary 76Ni17Fe5Cu2Cr (wt. %) alloy by mechanical alloying is investigated. The elemental powders of Ni, Fe, Cu and Cr where milled in argon atmosphere in a planetary ball mill for time up to 20 h. Formation of the alloy was checked by X-ray diffraction studies. It is found that the rapid formation of the alloy lead to the rapid establishment of an equilibrium between the welding and fracture process during milling, leading to a constant particle size distribution over a big range of milling time. The morphology of the powders, studied by scanning electron microscopy (SEM) confirms the rapid increase in size. The particle size distribution and the flowability of the powders are also analyzed as a function of milling time. Enhanced magnetization was found for the milled samples, compared to a cast alloy.


2016 ◽  
Vol 15 ◽  
pp. 17-24 ◽  
Author(s):  
Anshuman Patra ◽  
Swapan Kumar Karak ◽  
Snehanshu Pal

Mechanical alloying (MA) is a potential processing method for various equilibrium and non-equilibrium alloy phases such as supersaturated solid solution, metastable crystalline, amorphous, quasi-crystalline phases, nanostructures. Compared to conventional high temperature material processing such as melting and casting, improvement of solid solubility limit results from mechanical alloying at room temperature. The solid solubility increases with increase in milling time due to enhanced stress assisted atomic diffusion during particle refinement and reaches a saturation level at higher milling time. The extension of solid solubility is attributed to thermodynamic, dynamic or kinetic factors such as high dislocation density due to severe plastic deformation during particle refinement and enhanced diffusivity during MA. The review aims to discuss the insight of MA than other non-equilibrium processing in terms of achieving higher solubility, reasoning and mechanism of solubility improvement during MA of different alloy systems.


Sign in / Sign up

Export Citation Format

Share Document