Research on a Scheme of Real-Time Measuring of Lubrication Oil Quantity in an Aero-Engine Tank

2011 ◽  
Vol 317-319 ◽  
pp. 2079-2084
Author(s):  
Rang Shu Xu ◽  
Xiao Wen Chen ◽  
Jian Ming Yang ◽  
Zhi Wei Dong ◽  
Min Li Bai

The composition and principles of the digital measuring system was investigated on the basis of digital oil measuring method. Fly attitude-oil quality - measuring height data tables were generated by using UG software calculation of oil quantity characteristics. Then the oil surface angle under different fly attitude and overload was calculated through coordinate transformation method. Finally the amount of oil was calculated by three-dimensional liner interpolation method. Meanwhile, the free surface movement of lubricating oil tank under different overload was simulated through VOF numerical model. The results showed that using UG software to build model and generate fly attitude-oil quantity-measuring height data tables is accurate and useful. The VOF model method is a complement to digital measurement, which can track the phase interface of continuum, analyze the movement of oil qualitatively and calculate the dead volume of digital method.

Author(s):  
Qingming Liu ◽  
Björn Palm ◽  
Henryk Anglart

3D simulations on confined bubbles in micro-channels with diameter of 1.24 mm were conducted. The working fluid is R134a with a mass flux range from 125kg/m2s to 375kg/m2s. The VOF model is chosen to capture the 2 phase interface while the geo-construction method was used to re-construct the 2-phase interface. A heated boundary wall with heat flux varying from 15kW/m2 to 102kW/m2 is supplied. The wall temperature was calculated. The effects of mass flux and heat flux are studied. The shape of the bubble was predicted by the simulation successfully and the results show that they are independent of the initial shape. Both thin film evaporation and micro convection enhance the heat transfer. However, the micro convection which is caused by bubble motion has greater contribution to the total heat transfer at the stage of bubble growth studied.


Energies ◽  
2013 ◽  
Vol 6 (6) ◽  
pp. 2819-2839 ◽  
Author(s):  
Hans-Joachim Naegele ◽  
Bernd Thomas ◽  
Christine Schrade ◽  
Andreas Lemmer ◽  
Hans Oechsner ◽  
...  

2015 ◽  
Vol 19 (8) ◽  
pp. 3653-3666 ◽  
Author(s):  
A. Šiljeg ◽  
S. Lozić ◽  
S. Šiljeg

Abstract. The bathymetric survey of Lake Vrana included a wide range of activities that were performed in several different stages, in accordance with the standards set by the International Hydrographic Organization. The survey was conducted using an integrated measuring system which consisted of three main parts: a single-beam sonar HydroStar 4300 and GPS devices; a Ashtech ProMark 500 base, and a Thales Z-Max® rover. A total of 12 851 points were gathered. In order to find continuous surfaces necessary for analysing the morphology of the bed of Lake Vrana, it was necessary to approximate values in certain areas that were not directly measured, by using an appropriate interpolation method. The main aims of this research were as follows: (a) to compare the efficiency of 14 different interpolation methods and discover the most appropriate interpolators for the development of a raster model; (b) to calculate the surface area and volume of Lake Vrana, and (c) to compare the differences in calculations between separate raster models. The best deterministic method of interpolation was multiquadric RBF (radio basis function), and the best geostatistical method was ordinary cokriging. The root mean square error in both methods measured less than 0.3 m. The quality of the interpolation methods was analysed in two phases. The first phase used only points gathered by bathymetric measurement, while the second phase also included points gathered by photogrammetric restitution. The first bathymetric map of Lake Vrana in Croatia was produced, as well as scenarios of minimum and maximum water levels. The calculation also included the percentage of flooded areas and cadastre plots in the case of a 2 m increase in the water level. The research presented new scientific and methodological data related to the bathymetric features, surface area and volume of Lake Vrana.


2001 ◽  
Author(s):  
Gordon E. Andrews ◽  
Hu Li ◽  
M. H. Jones ◽  
J. Hall ◽  
A. A. Rahman ◽  
...  

Author(s):  
Yannan Liang ◽  
Jiemin Zhou ◽  
Ying Yang ◽  
Ye Wu ◽  
Yanyan He

The use of phase-change materials for latent heat storage is a new type of environmentally-friendly energy-saving technologies. Molten salts, one kind of phase-change materials, which have high latent heats, and whose phase transition temperatures match the high temperatures of heat engines, are the most widely used high-temperature phase-change heat storage materials. However, the heat transfer at solid/liquid phase interface belongs to Micro/Nanoscale Heat transfer, lots of the thermal properties of molten salt at melting point is difficult to test. In this investigation, based on the theory that the thermal conductivity can be determined by measuring the speed of the propagation of the solid/liquid phase interface during phase change, a set of system is developed to investigate the thermal conductivity of molten salts at liquid/solid phase transformation point. Meanwhile, mathematical calculation is applied to intuitively simulate the melting and solidifying process in the phase change chamber, by which the error could be analyzed and partly corrected and the result precision could also be increased. And a series of verification experiments have been performed to estimate the precision and the applicability of the measuring system to evaluate the feasibility of the method and measuring system. This research will pave the way to the follow-on research on heat storage at high temperature in industry.


2001 ◽  
Author(s):  
Gordon E. Andrews ◽  
Jie Xu ◽  
M. H. Jones ◽  
J. Hall ◽  
A. A. Rahman ◽  
...  

2007 ◽  
Vol 10 (01) ◽  
pp. 35-42 ◽  
Author(s):  
W. Terry Osterloh ◽  
Wendell P. Menard

Summary Giant, geologically complex heavy-oil fields can take decades to develop, so development decisions made early in the life of the field can have long-range implications. Decision and risk analysis (D&RA) is often needed to make decisions that will maximize the risk-adjusted economic benefit. Unfortunately, in large fields, D&RA can be very challenging because of the large number of variables and the endless number of development and expansion scenarios to analyze. The time needed to complete a D&RA can become prohibitive when full-field reservoir simulation is the main tool for forecasting primary production and well count, with one simulation taking many hours or days to complete. This paper describes two new methods developed to overcome these challenges for a specific depletion-drive heavy-oil reservoir: a method for optimally populating a model with hundreds of horizontal wells, and a method to optimize expansion decisions quickly and directly. The utility of these tools has not been determined for other reservoirs and/or recovery mechanisms. A semiautomated spreadsheet-and-simulation method was developed to quickly place and select hundreds to thousands of hypothetical/future horizontal wells in a multimillion-gridblock model. Because the method automatically accounted for all model static properties and their effects on dynamic production response, the hypothetical wells had productivity characteristics very similar to the actual drilled wells placed in the model. A multivariate nonlinear interpolation method was developed that enabled full-field forecasts—for any combination of acreage allocation, well count, drilling order, and field rate constraint—to be calculated in less than 5 seconds, compared to approximately 20 hours for traditional simulation. Extensive validation work showed that well count and production curves from the spreadsheet virtually overlaid those obtained using traditional simulation of the particular expansion scenario. Such close agreement was possible because the basis of the spreadsheet forecast was utilization of traditional simulation forecasts from a handful of relevant cases. A key breakthrough beyond just fast forecasting was the coupling of the following three components inside the same spreadsheet: the fast forecasting method, calculation of an economic indicator/objective function (NPV), and commercial optimization tools. This linkage made possible, perhaps for the first time (at least at this scale), realization of direct optimization of any development scenario in a matter of minutes to a few hours, depending on the number of variables being optimized. Introduction The field in question was a giant extra heavy-oil accumulation covering hundreds of square miles and containing billions of barrels of 7 to 9ºAPI gravity oil trapped in shallow (1,500 to 3,000 ft) sandstone reservoirs of Miocene age (Fig. 1). The major reservoir sands were deposited in fluvial and fluviotidal channel systems. Reservoir properties were excellent, with porosity values of up to 36% and permeability values of up to 30-40 darcies. The gross interval was divided into three independent reservoir intervals by thick shales and further subdivided into a total of 12 sands. The variations in depth and oil gravity resulted in variations in pressure, temperature, solution gas/oil ratio (GOR), and oil viscosity (in-situ live-oil viscosity ranged from 1,000 to 10,000 cp). An upgrader was built to partially refine the crude. The upgrader capacity limited maximum production rate, and the contract term limited the production duration; combined, these defined the maximum that could be produced under the project scope. Whether this maximum would be achieved was contingent on drilling sufficient wells to fill the upgrader for the whole term. The ultimate number of wells required would depend on the performance of these wells, which in turn would depend on their locations, the reservoir and oil quality encountered, and the operating constraints imposed by artificial lift methods, pipeline pressures, and facility capacities.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012077
Author(s):  
D E Studenikin ◽  
M I Chizhikova

Abstract The article describes a method used to create an on-board measuring system to determine the degree of risk in towing operations using the mathematical apparatus of fuzzy logic. Based on the method of paired comparisons and transformations and using the interpolation method, membership functions of linguistic variables for determining the degree of risk were calculated. To eliminate the misperception of control commands in the tug in towing operations, the concordance component of risks was used. This method was used to assess the risk value for mooring with several operations. The on-board measuring system for risk assessment was developed. Its main component is a data bank containing factors that affect an assessment of the state and results of the fuzzy logic unit. The system can assist skippers in the decision-making process in shipboard operations. The fuzzy logic system was tested by interviewing maritime workers; the result proved the adequacy of this system.


Sign in / Sign up

Export Citation Format

Share Document