Deposition and Properties Studies of Superfine TiN Films with Magnetic Filter

2008 ◽  
Vol 32 ◽  
pp. 61-64 ◽  
Author(s):  
Ling Chen ◽  
De Chang Zeng ◽  
Wan Qi Qiu ◽  
Xin Wei Shi ◽  
Zheng Yi Liu

Arc ion plating(AIP) has higher deposition rates, whereas macro-particles (MPs) make the film properties decreasing. In this paper, AIP with or without magnetic filter (MF or AIP) and composition of AIP followed with magnetic filter (MFAIP) were designed to deposit TiN films on silicon (Si) and high-speed steel(HSS), respectively. Scanning electron microscope (SEM), nanoindentation and microscratch tests were investigated. SEM showed that both the MF and the MFAIP films had a superfine layer among the columnar crystals grown vertically against substrate surface. However, the columnar crystals of MF films were leptosomatic and well-orientational, while MFAIP ones were coarse and short, and even ragged in size and orientation. Nanoindentation test results showed the highest hardness for MF films and the lowest one for AIP films. A new parameter Scratch Crack Propagation Resistance (CPRs) was introduced to evaluate the film adhesion properties in a scratch test. MF films had the highest adhesion. AIP films were most susceptible to failure as the CPRs was the lowest, although the Lc1 was higher than MFAIP ones. It was proposed that the MPs were effectively removed with the MF, and the MF layers were superfine to improve the properties of the films.

2011 ◽  
Vol 117-119 ◽  
pp. 1071-1075 ◽  
Author(s):  
Xin Wei Shi ◽  
Xing Rui Li ◽  
Ning Yao ◽  
Xin Chang Wang ◽  
Kai Lan Song ◽  
...  

TiN thin films were deposited by Arc Ion Plating(AIP) with or without Magnetic Filter(AIP or MFAIP) on silicon(Si) and high-speed steel(HSS) substrates,respectively.Scanning Electron Microscope(SEM),X-ray Diffraction(XRD),nanoindentation and microscratch tests were applied for microstructure and property investigation.SEM data showed that the AIP films are plagued with macro-particles(MPs),while the MFAIP films have no or less MPs.XRD showed that the MFAIP films have more obvious preferred orientation at (111) than the AIP films.Scratch Crack Propagation Resistance(CPRs) was introduced to evaluate the film adhesion properties in a scratch test.MFAIP films had higher adhesion.AIP films were susceptible to failure as the CPRs was lower.The MFAIP films had higher hardness than the AIP ones, due to the reason of less MPs in MFAIP films and more obvious preferred orientation.It was proposed that the MPs were effectively removed with the magnetic filter, so the properties of the MFAIP films were greatly improved.


2013 ◽  
Vol 712-715 ◽  
pp. 7-11 ◽  
Author(s):  
Mazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Michael Sсheffler

This paper presents research of influence electrolyte plasma carbonitriding on tribological properties of R6M5 high-speed steel. Shows perspectiveness of carbonitriding high-speed steels in electrolyte plasma. The results of research demonstrated increasing wear-resistance of R6M5 steel after carbonitriding in electrolyte plasma. Under the same test conditions by the method of scratch-test have been determined that the depth of the scar of a modified layer has become less in comparison with the original sample, which indicates a significant increase of wear-resistance and hardness of the surface carbonitriding layer R6М5 steel. It was set that after electrolytic-plasma carbonitriding abrasive wear-resistance of the surface layers of R6M5 steel is increased by 25%. Introduction


1993 ◽  
Vol 308 ◽  
Author(s):  
Ru Wang

ABSTRACTThe validity of Lc of film failure is studied with friction — detected scratch test . The specimens used in the experiment are ion-plated TiN and Ti films,Chemical-Plated NiPCu films on steel of various hardness,ion beam mixed plated TiN films on optical glass,The morphology of failed films was studied under optical microscope and scanning electronmicroscope,The composition of starting failure of films was analyzed with electro — probe. It is found that in the curves of scratch tests of ion-plated TiN and Ti films on high-speed steel,the load corresponding the sudden change of the horizontal force is the same as the critical load of film failure,however,the critical load obtained in the scratch test of the ion-plated TiN and Ti films on soft steel is the some deference compared with optical microscope analyzed, that is principally due to the property of films and substrates (hardness and coefficient).The morphology and mechanism of ion — plated TiN and Ti films on high —speed steel are also studied in the paper.The adhesion between film and substrate is an effective method in evaluating the films property. After apprasing the effectiveness of acoustic emission monitoring scratch test, someone think that no matter coated with hard or soft film it is effective on the brittle hard substrate. However,there exist errors to different extent on other film-substrate system,and the scratch test is inapplicable for soft film-soft substrate system[1]. P. A. Steinmann pointed out while studying the factors influnceing the critical load Lc,that friction coefficient is a key factor on Lc,it provided valuable information in measuring Lc,but it think it is imporsible to measure Lc totally dependent on sudden change friction or friction coefficient, howeveer, for a specific coating substrate system,it is acceptable to say that Lc is dependent on friction coefficient[2]. This paper study experimentally on the friction detected scratch test and found out that effectiveness of Lc varies substantially in different film-substrate system. The author studiied the regularity of various system and discuse the season. The failure morphology and principles of ion-plated TiN and Ti film on highspeed steel are also analyzed in this paper.


2011 ◽  
Vol 675-677 ◽  
pp. 1307-1310 ◽  
Author(s):  
Xiao Hong Yao ◽  
Bin Tang ◽  
Lin Hai Tian ◽  
Xiao Fang Li ◽  
Yong Ma

TiN coating with thickness of 2.5μm was deposited on high-speed steel (HSS) substrate by pulsed bias cathodic arc ion plating. The surface and cross-section morphologies, composition depth profile and phase structure were characterized by FESEM, GDOES and XRD, respectively. Scratch test for adhesion evaluation, microhardness test for hardness measurement, and potentiodynamic polarization for corrosion resistance test were used. The results show that the TiN coating exhibits smooth surface, dense columnar grain structure and an obviously preferred orientation of TiN(111). The adhesion of the coating to substrate is exceeded more than 100N. The hardness of the coating is about 26 GPa. The low corrosion current density (Icorr) and rather high corrosion potential (Ecorr) value imply that the TiN coating displays a good corrosion resistance in 0.5mol/l NaCl solution. However, pitting is still existed due to the defects in the coating.


Author(s):  
Paulína Zacková ◽  
Lucia Števlíková ◽  
Ľubomír Čaplovič ◽  
Martin Sahul ◽  
Vitali Podgurski

Abstract The contribution deals with analysis of the influence of the substrate surface laser ablation before deposition process to improve the adhesion of coating-substrate system. The coatings were applied to the high-speed steel 6-5-2-5 (STN 19 852) and WC-Co cemented carbide with cobalt content of 10 wt%. LAteral Rotating Cathodes (LARC®) process was chosen for evaporation of individual CrN layers. Influence of laser ablation on the substrate morphology, structure, roughness, presence of residual stresses inside the substrates and layers and their adhesion behavior between the layers and the base material was studied. Scanning electron microscopy fitted with energy dispersive spectroscopy was utilized to investigate morphology and fracture areas of substrates with CrN layers. X-ray diffraction analysis was employed to detect the residual stresses measurements. Adhesion between the coatings and substrate was analyzed using “Mercedes” testing.


2011 ◽  
Vol 189-193 ◽  
pp. 925-930 ◽  
Author(s):  
Xiu Qin Bai ◽  
Jian Li

The low temperature deposition principle of magnetron sputtering was discussed. Reactive magnetron sputtering technique was used to gain titanium nitride (TiN) thin films on W18Cr4V high-speed steel substrates at low temperature. A series of experiments had been conducted to study the properties of TiN films. The experimental results showed that at the low temperature(<140 °C), magnetic sputtering can be used for the deposition of TiN film with compact, uniform and high nano-hardness, and their tribological properties were excellent, which co-determined by the film structure of low temperature magnetron sputtering and the counter-parts of rubbing pairs.


MRS Advances ◽  
2018 ◽  
Vol 3 (18) ◽  
pp. 949-955
Author(s):  
Gongsheng Song ◽  
Qiang Fu ◽  
Chunxu Pan

ABSTRACTIn this paper, a multilayer CNx/TiN composite film on high-speed steel substrate was prepared by using a multi-arc assisted DC reactive magnetron sputtering system. The cross-section observations of the fracture surface reveal that the films show a pure cleavage fracture due to its super-high hardness, and the interfacial strength between the film and substrate is associates with the film thickness, i.e., 2μm is a critical thickness for the present deposition. That is to say, there is no disbonding or cracking at the interface when the film thickness is less than 2μm, while the interfacial failure is generated if the film thickness is larger than 2μm. This direct SEM observation of the fracture surface provides a distinct image for evaluating the mechanical property and also analyzing the failure mechanism of the films.


2010 ◽  
Vol 434-435 ◽  
pp. 462-465
Author(s):  
Xiang Yu ◽  
Cheng Biao Wang ◽  
Zhi Jian Peng

Aiming at improving their tribological behaviors, adhesion of diamond-like carbon (DLC) films on high-speed steel was investigated by varying doping silver (Ag) contents in a mid-frequency dual-magnetron sputtering system. Scratch testing was performed on the Ag-DLC films under a progressive normal load from 3 to 80 N, along with a Rockwell C indenter at a relative displacement speed for a Rockwell testing. A microscopic analysis of the scratch evolution under a progressive normal load permits identification of the various traces and the damage mechanisms of the films. A process of the film adhesion failure typically in turn appears like this, germination of the cracks along the longitudinal edges of the scratch traces; propagation in front of the indenter; and, detachment in the subsurface by shearing. An Ag-DLC film of 15.2 at% Ag exhibits a superior adherence on the steel substrate as compared with the three Ag DLC films of the other doping silver contents.


Sign in / Sign up

Export Citation Format

Share Document