Multiple Vortex Body Vortex Numerical Simulation

2011 ◽  
Vol 328-330 ◽  
pp. 1755-1758
Author(s):  
Han Xiao Liu ◽  
Zhong Liu ◽  
Huai Liang Li ◽  
Xin Xin Feng ◽  
Zhen Zhong Xing

In this paper, the continuity equation, momentum equation and the k-ε turbulence equation were introduced to simulate the flow field of the multiple vortex bodies in different spacing cases. Found that each vortex body had good effect in producing vortex, and the greater flow field spacing, the smaller the highest velocity; the turbulence intensity is increasing gradually from the former vortex body to the next one, and there may be a best spacing between the vortex bodies which makes the best turbulent intensity. All of these theories provide a train of thought for the turbulent coalescence mechanism.

2011 ◽  
Vol 141 ◽  
pp. 386-391 ◽  
Author(s):  
Ying Liu ◽  
C.J. Wu

This paper presents the techniques to numerically simulate the inner flow field of the air conditioner outdoor unit with Fluent. The results are verified experimentally and proved to be mesh-independent. The possibility of improvement to increase the flow rate by modifying the grill’s structural parameters is shown through analyzing the numerical results. The gill’s structure is improved using the flow field information got from numerical simulation and the improvement helps to increase flow rate by 4.1% and reduces the turbulent intensity near the grill significantly.


2016 ◽  
Vol 20 (3) ◽  
pp. 953-956 ◽  
Author(s):  
Ting Chen ◽  
Kang Yang ◽  
Li-Li Wu

The air flow field of a foreign fiber separator is simulated numerically. Effects of design parameters such as the nozzle diameter and entrance width of the noil box on the air velocity along nozzle axis, turbulence intensity, and jet deflection distance are studied. Larger nozzle diameters and larger entrance widths of the noil box are advantageous to the elimination of foreign fibers. The results provide a theoretical basis for the design of foreign fiber separators.


2020 ◽  
Vol 1670 ◽  
pp. 012030
Author(s):  
Shiming Chen ◽  
GuichunYang ◽  
Shuang Zhou ◽  
Wenzhuo Chen ◽  
Jinfa Guan ◽  
...  

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


2020 ◽  
Vol 310 ◽  
pp. 00039
Author(s):  
Kamila Kotrasova ◽  
Vladimira Michalcova

The numerical simulation of flow process and heat transfer phenomena demands the solution of continuous differential equation and energy-conservation equations coupled with the continuity equation. The choosing of computation parameters in numerical simulation of computation domain have influence on accuracy of obtained results. The choose parameters, as mesh density, mesh type and computation procedures, for the numerical diffusion of computation domain were analysed and compared. The CFD simulation in ANSYS – Fluent was used for numerical simulation of 3D stational temperature flow of the computation domain.


2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


Sign in / Sign up

Export Citation Format

Share Document