Myristic Acid/Montmorillonite Composite as Shape Stabilized Phase Change Material for Thermal Energy Storage

2011 ◽  
Vol 332-334 ◽  
pp. 935-938
Author(s):  
Zhong Li ◽  
Shao Ming Yu ◽  
De Xin Tan ◽  
Tong He Yao

A new type of shape stabilized phase change material (PCM) with good heat storage was produced by intercalating myristic acid (MA) with modifid montmorillonite (MMT). The structure, thermal properties of the composite PCM were determined by X-ray diffraction (XRD), Fourier transformation infrared (FTIR) and Differential Scanning Calorimetry (DSC) analysis technique. In the XRD analysis, expansions of the d spacings in the (001) plane were observed in all samples, indicating that the intercalation of MA in the interlayers of MMT was successfully achieved. The results of DSC indicated that the shape stabilized PCM displayed a high heat capacity (133.6 J.g-1)


2013 ◽  
Vol 652-654 ◽  
pp. 131-134 ◽  
Author(s):  
Zhong Li ◽  
Ming Gong Chen ◽  
De Xin Tan ◽  
Jie Chen

A new type of form-stable phase change material (PCM) with good heat storage was prepared by impregnation of stearic acid (SA) into the interlayer of modified montmorillonite (MMT). The structure, thermal properties of the composite PCM were determined by X-ray diffraction (XRD), Fourier transformation infrared (FTIR) and Differential Scanning Calorimetry (DSC) analysis technique. In the XRD analysis, expansions of the interlayer platelet spacing (001 diffraction peak) were observed in all samples, indicating that the impregnation of SA in the interlayer of MMT was successfully completed. The results of DSC indicated that the melting point and latent heat of the form-stable PCM is 63.2 °C and 118.6 J/g, respectively



2013 ◽  
Vol 785-786 ◽  
pp. 123-126
Author(s):  
Ying Ye ◽  
Kun Yan Wang ◽  
Ge Chang ◽  
Qian Ying Jiang

Polypropylene/organoclay modified by dodecanol phase change material were prepared by melt blending method. The thermal stability and crystallization behavior was studied by thermogravimetry (TG), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). TG results indicated the window of processing of PP could be improved by adding small amount organoclay modified by dodecanol to the blend. DSC showed the organoclay modified by dodecanol affected the crystallization behavior of PP as heterogeneous nucleation agent. XRD results show that the organoclay modified by dodecanol does not change the crystal structure in the blends but only decrease the intensity of the diffraction peak.



2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Chenzhen Liu ◽  
Ling Ma ◽  
Zhonghao Rao ◽  
Yimin Li

In this study, micro-encapsulated phase change material (microPCM) was successfully synthesized by emulsion polymerization method, using magnesium sulfate heptahydrate (MSH) as core material and urea resin (UR) as shell material. The surface morphologies and particle size distributions of the microPCM were tested by scanning electron microscopy (SEM) and laser particle size analyzer. The chemical structure of microPCM was analyzed by Fourier-transform infrared spectroscopy (FTIR). The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity coefficient instrument, respectively.



2020 ◽  
pp. 152808372092149
Author(s):  
Saraç E Gözde ◽  
Öner Erhan ◽  
Kahraman M Vezir

Organic coconut oil was investigated as a bio-based phase change material in core, and melamine formaldehyde was used as shell material to fabricate microencapsulated phase change material for thermo-regulation in nonwoven textiles. The microcapsules were synthesized using in situ polymerization method. The produced microcapsules (microencapsulated phase change material) were applied by knife coating in different ratios (1:5 and 1.5:5; MPCM: coating paste by wt.) to 100% polypropylene nonwoven, porous, and hydrophilic layer of a laminated, spunbond, and double-layer fabric. The coated layer was confined within two layers of the fabric to develop a thermo-regulative system on the nonwoven fabric to regulate the body temperature in surgeries. The two layers were composed by applying heat (140°C) and pressure (12 kg/cm2). Organic coconut oil, the fabricated microcapsule, and the composite fabrics were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Scanning electron microscopy results revealed that spherical and uniform microcapsules were obtained with an approximate particle size of 2–6 µm. Differential scanning calorimetry results indicated that microencapsulated phase change material and the composite fabrics possessed significant melting enthalpies of 72.9 and 8.4–11.4 J/g, respectively, at peak melting temperatures between 21.6 and 22.8°C within human comfort temperature range. The utilization of coconut oil as a phase change material and the composite integration of this phase change material to a nonwoven fabric bring forward a novelty for future applications.



2013 ◽  
Vol 553 ◽  
pp. 23-26 ◽  
Author(s):  
Camila Barreneche ◽  
Aran Solé ◽  
Laia Miró ◽  
Ingrid Martorell ◽  
A. Inés Fernández ◽  
...  


2011 ◽  
Vol 239-242 ◽  
pp. 1101-1104
Author(s):  
Jing Guo ◽  
Heng Xue Xiang ◽  
Cheng Nv Hu

Using stearic acid-lauric acid binary of fatty acid as phase change material, waste polyacrylonitrile fiber (PAN) as supporting material, organic montmorillonite (OMMT) as modifier, and N, N-dimethylformamide as solvent, OMMT-PAN-binary fatty acid composite phase change materials(PCM) is prepared by solution blending. Using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TG) study the structure and properties of PCM, the optimized preparation techniques of PCM obtained by orthogonal tests. SEM results showed that the PCM was homogeneous structure, binary of fatty acid dispersed in the continuous phase PAN; TGA results indicated that the degradation of the phase change material can be divided into three steps; DSC results showed that the crystallization enthalpy of PCM reached 143.27 J/g, the phase change temperature was around 23°C, and the DSC thermal circulation showed good thermal stability of the PCM; cooling curve showed that the PCM had good heat insulation properties, holding time reached 800s, and after repeated thermal circulation, heat insulation properties remained the same.



e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Ai Yafei ◽  
Jin Yong ◽  
Sun Jing ◽  
Wei Deqing

AbstractIn this study, suspension polymerization is described to fabricate microcapsules containing n-hexadecane as phase change material. In the suspension polymerization, casein is employed as emulsifier and stabilizer instead of synthetic surfactant. Microcapsules with polystyrene as shell and n-hexadecane as core have an average diameter of 3~15μm and the size distribution are narrow. Thermal properties are investigated by differential scanning calorimetry (DSC) showing that the microcapsules can store and release an amount of latent heat over a temperature range nearing the melting point of pure n-hexadecane. The latent heat of fusion of microencapsulated n-hexadecane decreases after microencapsulation. The melting point of microencapsulated n-hexadecane is near but higher than that of pure n-hexadecane, and the polymerization time has little effect on the melting point.



2021 ◽  
Vol 20 (3) ◽  
pp. 135-144
Author(s):  
Tomasz Bien

The paper describes the research on the method of production of granulated phase-change materials (PCM) used in construction industry for the accumulation of thermal energy. As mineral materials for the granules preparation zeolite from fly ash Na-P1 and natural diatomite dust were used which were impregnated with paraffinic filtration waste and granulated using a combined granulation method. Obtained granules were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherm, and differential scanning calorimetry (DSC). Mechanical strength of the materials was determined in a “drop strength” test. Performed analyses revealed that mineral composition and micromorphology of the diatomite and zeolite granules were varied, with zeolite granules having higher mechanical strength.



Sign in / Sign up

Export Citation Format

Share Document