Failure Mechanism of Tungsten Heavy Alloy for Mould

2011 ◽  
Vol 341-342 ◽  
pp. 432-435
Author(s):  
Wei Huang ◽  
Ya Feng Li ◽  
Kai Wen Tian ◽  
Fu Jun Shang ◽  
Yong Liu ◽  
...  

The failure mechanism of tungsten matrix composite was studied with microscale numerical simulation. The results show that high strength tungsten particles are the real loading elements of composite, its strength level embodies the whole property of the composite to some extent. The real stress in tungsten particles is much higher than the external load, so failure may take place when the external load is less than the theoretical strength of tungsten particles.

2019 ◽  
Vol 10 (1) ◽  
pp. 62 ◽  
Author(s):  
Shubo Zhang ◽  
Gang Wang ◽  
Yujing Jiang ◽  
Xianlong WU ◽  
Genxiao Li ◽  
...  

Based on the underground jointed rock of the Huangdao water sealed oil depot in China, the shear failure mechanism of bolted jointed rock is studied through laboratory experiments and numerical simulation. Laboratory experiments are performed to explore the shear behavior of bolted jointed rock with different joint roughness. Our results show that using high strength bolts is beneficial to improving the shear strength of the jointed rock, but the high strength of bolts can also lead to the rock fracture, which should be avoided. For this particular project site, experimental results indicate that 15% elongation is the best. In addition, a new numerical simulation method with CZM (cohesive zone model) used for modeling the shearing process of bolted jointed rock is proposed. It can reasonably describe the characteristics of jointed rock as a discontinuous medium, and bolt as a continuous medium, that replicate well the shearing process. The numerical model is then verified by comparing the experiment results, and it can be effectively be applied to the simulation of joint shearing process. Finally, we use this simulation method to explore the shear failure mechanism of bolted joints, and find that the root cause of rock failure is the deformation mismatch between the bolt and the surrounding rock. The tensile stress between them eventually causes the rock to fracture near the bolt hole.


2019 ◽  
Vol 61 (3) ◽  
pp. 209-212
Author(s):  
Ramachandran Damodaram ◽  
Gangaraju Manogna Karthik ◽  
Sree Vardhan Lalam

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Asad H. Aldefae ◽  
Rusul A. Alkhafaji

AbstractThe purpose of this paper is to assess the failure mechanism of riverbanks due to stream flow experimentally and numerically to avoid recurring landslides by identifying the most dangerous place and treating them by a suitable method. The experiments and the physical models were carried out to study the failure mechanism of riverbank and evaluation of their stability in two cases: short-term condition and long-term condition flow where three models were tested. The Tigris River (Iraq) is considered as a model in this paper in terms of the applied velocity and modeled soil of the banks it was used at the same characteristics in the prototype scale. Also, a numerical simulation was performed using the FLOW-3D program to determine the velocity distribution and to identify the areas subjected to the high stress levels through the water flow. The obtained results in this paper are inspecting of failure mechanism types that occur under the influence of specific limits of flow velocity, which have shown good compatibility with the type of failure in the prototype scale. In addition to calculating the amount of soil erosion, the failure angle, and the amount of soil settlement at the riverbank model is investigated also. The results of experimental work and numerical simulation were well matched, where the standard error rate for Froude number ranged between (1.8%–6.6%), and the flow depth between (2.7%–6.9%).


2021 ◽  
Vol 25 ◽  
pp. 100697
Author(s):  
Chenwei Shao ◽  
Calvin Lo ◽  
Kapil Bhagavathula ◽  
André McDonald ◽  
James Hogan

2020 ◽  
Vol 1676 ◽  
pp. 012162
Author(s):  
ZHANG Fulong ◽  
ZHANG Hong ◽  
LIU Shuangyu ◽  
LIU Fengde

2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2021 ◽  
Author(s):  
Yuxin Xu ◽  
Xiaoming Qiu ◽  
Jinlong Su ◽  
Suyu Wang ◽  
Xiaohui Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document