The Removal of Color from Fuchsin Basic Dye Wastewater Using Activated Carbon

2011 ◽  
Vol 356-360 ◽  
pp. 2616-2619
Author(s):  
Li Yi Ye ◽  
Xiao Xuan Zhang ◽  
Ying Wu Yin ◽  
Song Tu ◽  
Yong Sha

The performance of activated carbon (AC) adsorption process for the treatment of a simulated wastewater of fuchsin basic dye was investigated. The experiment revealed that under the optimum adsorption conditions (initial concentration of wastewater 250 mg L-1of dye, temperature 25 °C and AC dosage 4 g L-1), the color removal efficiency was 98% after 360 min of adsorption. As for the further use of AC, the saturated AC was regenerated by heated 20 min at 600 °C in the atmosphere of N2. Efficiency of regeneration was 99% and the regeneration loss was less than 5%. It indicated that AC was effective in the decolorization of dye wastewater.

2021 ◽  
Vol 22 (2) ◽  
pp. 199-205
Author(s):  
Iva Yenis Septiariva ◽  
I Wayan Koko Suryawan ◽  
Ariyanti Sarwono

ABSTRAK Umumnya, industri tekstil menggunakan berbagai pewarna sintetis yang menghasilkan air limbah yang sangat berwarna. Oleh karenaitu, air limbah tekstil ini harus diolah sebelum dibuang ke lingkungan. Penelitian ini bertujuan untuk mengetahui penyisihan warna dengan teknik adsorpsi menggunakan karbon aktif. Metode ini dianggap sebagai teknologi berbiaya rendah dan perawatan yang mudah untuk pengolahan air limbah. Proses adsorpsi batch dilakukan dengan waktu kontak yang berbeda yaitu 5–60 menit dan variasi konsentrasi awal yang mengandung Reactive Black 5 (RB-5) sebesar 5 mg/L; 10 mg/L; 15 mg/L; dan 20 mg/L. Azo-Reactive Black-5 adalah material pewarna yang digunakan untuk membuat air limbah artifisial. Hasil penelitian menunjukkan bahwa proses adsorpsi menurunkan kadar konsentrasi warna masing-masing sebesar 86,21%, 85,21%, 84,29%, dan 71,07% selama 60 menit. Peningkatan konsentrasi zat warna dalam air limbah menyebabkan efisiensi penghilangan warna yang rendah. Selain itu, penelitian mengevaluasi efektivitas adsorpsi batch oleh karbon aktif karena efisiensi penghilangan warna dapat mencapai lebih dari 50% setelah waktu kontak 30 menit. Hal ini terlihat pada konsentrasi awal 5 mg/L dan 20 mg/L dengan efisiensi penyisihan sebesar 66,18% dan 53,97%. Kinetika adsorpsi yang sesuai untuk pendekatan pemodelan pada penelitian ini adalah Langmuir isotherm dengan nilai r2 yang lebih besar dan mendekati nilai 1 yaitu 0,9756. Estimasi kapasitas adsorpsi maksimum yang diperoleh dari model sebesar 4,353 mg/g. Kata kunci: Air limbah tekstil, warna, adsorpsi, efisiensi penyisihan   ABSTRACT Generally, the textile industry uses various synthetic dyes that produced a large amount of highly colored wastewater. This research aims to investigate the color removal by adsorption using powdered activated carbon. This method is considered viable due to cost effective and ease of maintenance for wastewater treatment. The batch adsorption process was carried out at different contact times of 5–60 minutes and varied initial dye concentration containing azo-Reactive Black 5 (RB-5) of 5 mg/L; 10 mg/L; 15 mg/L; and 20 mg/L. A synthetic RB-5 was prepared  as the artificial wastewater to simulate the actual wastewater. The adsorption  proceeded initially with higher rates and gradually slowed down until reached a constant value due to the carbon surface's saturation with increasing contact time.The results showed that, at different initial dye concentration, the adsorption process decreased color concentration for 60 minutes by 86.21%, 85.21%, 84.29%, and 71.07% respectively. The increase of initial dye concentration lowers color removal efficiency. Besides, the effectiveness of adsorption by activated carbon was found more than 50% after 30 minute of contact time. The efficiency removal presented initial concentration of 5 mg/ and 20 mg/L was 66.18% and 53.97%, respectively. Langmuir and Freundlich isotherm were also plotted to assess the kinetics of adsorption. Langmuir isotherm gave the best modelling approach for adsorption kinetics as indicated by higher coefficient of determination (r2) of 0.9756. An estimated maximum adsorption capacity obtained from the model was 4.353 mg/g. Keywords: Textile wastewater, color, adsorption, removal efficiency


2012 ◽  
Vol 610-613 ◽  
pp. 1939-1942
Author(s):  
Ji Zhou Li ◽  
Xu Yin Yuan ◽  
Ming Tian ◽  
Hao Ran Ji ◽  
Wan Jiang

In this study, five novel flocculants, QTRY-02, DC-491, Fennofix K97, BWD-01 and MD-03 were chosen to treat Reactive Brilliant Blue KN-R simulated wastewater by jar tests. The effect of flocculant dosage, initial pH, solution temperature of simulated dye wastewater and sedimentaion time on the color removal was examined respectively. The maximum color removal efficiency of KN-R was over 82% after 20 minutes of sedimentation and the optimal dosage was 150mg/L for all flocculants. In the pH range from 3 to 11, small changes in the color removal efficiency for QTRY-02. While for BWD-01, the efficiency increased from 67.3% to 88.3%. For both QTRY-02 and MD-04, decolorization efficiency increased as the solution temperature increased from 10°C to 50°C and the same result appeared when prolonging the sedimentation time from 1 to 12 hours.


2011 ◽  
Vol 183-185 ◽  
pp. 873-876
Author(s):  
Jun Jie Yue ◽  
Xing Long Jin ◽  
Zhao Hui Jin

In this paper, the adsorption and decolorization capability of expanded graphite (EG) on the simulated wastewater containing Acid Orange Ⅱwere studied. The experimental results show that the initial concentration of wastewater, the dosage of EG, the pH value and the temperature all have greater effects on the decolorization ratio of simulated Acid Orange Ⅱ wastewater. The dye- wastewater containing lower concentration(<150 mg/L) of Acid Orange Ⅱ is more suitable to be treated by EG, and approximately 100 mg/L is the preferable concentration. The decolorization ratio increases with the increment of the dosage of EG and the temperature level, but the growth rate obviously decreases at the higher initial concentration. All the decolorization ratios under strong acidic (pH<5) and alkalic (pH>11) conditions are higher than that at the range of 5-11 pH values, the highest value even reaches over 94%, while the decolorization ratio under the latter conditions are only between 75% and 85%.


2010 ◽  
Vol 113-116 ◽  
pp. 87-90
Author(s):  
Qing Jie Xie

The microwave irradiation (MI) was found that it had significantly treatment efficiency for pollutants removal. It was developed to treat the alage in this paper. The granular activated carbon (GAC) was used as catalyst. The effect of the acting time, MI power, GAC amount and the initial concentration on alage removal were studied. The results showed: with the increasing of the acting time, MI power, GAC amount the alage removal rate were increased, but the effect of the initial concentration to alage removal was opposite; the optimum value of acting time, MI power and GAC amount were 5min, 450W and 3g respectively with the alage removal efficiency reached up to 100%. It also showed that with the alage removed under the MI the COD, SS were removed too. It was discovered that the oxidation process was basically in conformity with the first-order dynamic reaction(ln(C/C0)=-0.9371t+0.6744(R2=0.9472)).


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p &lt; 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Y. S. Mohammad ◽  
E. M. Shaibu-Imodagbe ◽  
S. B. Igboro ◽  
A. Giwa ◽  
C. A. Okuofu

Modeling of adsorption process establishes mathematical relationship between the interacting process variables and process optimization is important in determining the values of factors for which the response is at maximum. In this paper, response surface methodology was employed for the modeling and optimization of adsorption of phenol onto rice husk activated carbon. Among the action variables considered are activated carbon pretreatment temperature, adsorbent dosage, and initial concentration of phenol, while the response variables are removal efficiency and adsorption capacity. Regression analysis was used to analyze the models developed. The outcome of this research showed that 99.79% and 99.81% of the variations in removal efficiency and adsorption capacity, respectively, are attributed to the three process variables considered, that is, pretreatment temperature, adsorbent dosage, and initial phenol concentration. Therefore, the models can be used to predict the interaction of the process variables. Optimization tests showed that the optimum operating conditions for the adsorption process occurred at initial solute concentration of 40.61 mg/L, pretreatment temperature of 441.46°C, adsorbent dosage 4 g, adsorption capacity of 0.9595 mg/g, and removal efficiency of 97.16%. These optimum operating conditions were experimentally validated.


2015 ◽  
Vol 802 ◽  
pp. 425-430
Author(s):  
Muhd Nazmi Ismail ◽  
Hamidi Abdul Aziz ◽  
Mohd Azmier Ahmad ◽  
Nik Athirah Yusoff

In this present study, rubber seed-coated activated carbon (RSCAC) was used as a natural adsorbent to remove basic (MB), acid (MR) and reactive (RBV) dyes using batch process. Each dye in the adsorption process was tested at different initial concentration from 50-500 mg/l. Different dyes showed different percentage removals. The highest removal was recorded by MB which was up to 99.9 %. The experimental data was analyzed with Langmuir and Freundlich adsorption models. The data fitted well with Langmuir. The adsorption capacity were 332.99, 210.33 and 155.37 mg/g for MB, MR and RBV, respectively.


2011 ◽  
Vol 340 ◽  
pp. 487-491
Author(s):  
Xiao Ming Chen ◽  
Jian Feng Ma ◽  
Ding Long Li

Bentonite-supported magnetite particles (MagBt-p) were prepared by co-precipitation. The adsorption capacity of Bentonite-supported magnetic particles on waste water containing OrangeⅡ was tested. Some influence factor such as the dose, the initial concentration of OrangeⅡ, the pH, the contact time and the presence of surfactant were studied. Results showed that cation surfactant (CTAB) greatly enhanced the adsorption of OrangeⅡ. The maximum removal efficiency was 96.6% at 180mg/L (CTAB) and beyond this concentration there was almost no adsorption. Besides, the removal efficiency was affected by pH and contact time, the maximum removal efficiency was found at pH 2.1-3, the adsorption was rapid during the first 120 min and then equilibrium within 180min.


2019 ◽  
Vol 25 (4) ◽  
pp. 588-596
Author(s):  
Shun-hwa Lee ◽  
Yun-kyung Park ◽  
Miran Lee ◽  
Byung-dae Lee

This study was carried out to increase the treatment efficiency through the improvement of the conventional biological process, and to propose the optimal treatment direction. The optimal treatment conditions were derived based on the results of the spike damage tests in each single process. The removal efficiency of micropharmaceuticals was further increased when an ozone treatment process was added to the biological process compared to the single process. The soil and activated carbon adsorption process was introduced in the post-treatment to remove the micropharmaceutical residues, and the removal efficiency of the pharmaceduticals in the final effluent was more than 85% in spike damage experiment. In particular, the continuous process of biological treatment-ozone-adsorption could ensure the stable treatment of micropharmaceuticals, which had not been efficiently removed in the single process, as it showed more than 80% removal efficiency. Therefore, it is expected that the addition of the ozone oxidation and activated carbon adsorption process to the existing sewage treatment facilities can contribute to the efficient removal of micropharmaceuticals.


2020 ◽  
Vol 20 (3) ◽  
pp. 530
Author(s):  
Nur Azza Azyan Muin ◽  
Hawaiah Imam Maarof ◽  
Nur Alwani Ali Bashah ◽  
Nor Aida Zubir ◽  
Rasyidah Alrozi ◽  
...  

In this work, coconut shell activated carbon (CSAC) electrode was evaluated to remove copper ion via electrochemical processes. CSAC electrode and graphite were applied as the cathode and the anode, respectively. The reusability of the electrode, the effects of initial pH, applied voltage and initial concentration were studied. The electrochemical process was carried out for 3 h of treatment time, and the electrodes (anode and cathode) were separated by 1 cm. The results revealed that CSAC is proven as a reusable electrode to remove copper ion, up to 99% of removal efficiency from an initial concentration of 50 ppm after it had been used three times. From the observation, the removal efficiency was optimum at an initial pH of 4.33 (without any initial pH adjustment). The applied voltage at 8 V showed a higher removal efficiency of copper ion compared to at 5 V.


Sign in / Sign up

Export Citation Format

Share Document