Removal of methylene blue from aqueous solution using high performance calcium alginate/activated carbon membrane

2019 ◽  
Vol 32 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Xiaoping Zhang ◽  
Yanhui Li ◽  
Meixiu Li ◽  
Heng Zheng ◽  
Qiuju Du ◽  
...  

Purpose The purpose of this paper is to purify the wastewater in the garment industry. Design/methodology/approach The preparation of the calcium alginate (CA)/activated carbon (AC) composite membrane was achieved by vacuum freeze-drying and the cross-linking reaction between sodium alginate and CaCl2. Effective parameters in the methylene blue (MB) adsorption such as temperature, dose, contact time and pH were discussed. The adsorption properties of the composite membrane were investigated by isotherm, kinetics and thermodynamic analysis. The adsorption equilibrium data were described by the adsorption isotherm Langmuir model and the Freundlich model. The pseudo-first-order, pseudo-second-order and intra-particle diffusion equations were selected to evaluate the kinetics. The thermodynamic study described that the adsorption reaction was spontaneous and exothermic. Findings The AC/CA membrane is an efficient and powerful adsorbent to remove MB in printing and dyeing wastewater, and provides a new idea for the selection of adsorption materials for industrial printing and dyeing wastewater. Practical implications The composite membrane research on CA and AC can provide new ideas for the research of these kinds of materials. Social implications The paper contributes to its wider and convenientapplication in wastewater treatment. Originality/value Studies on the combination of CA and AC into adsorption membranes and for the removal of dyes from printing and dyeing wastewater have not been reported. A novel composite material is provided for treatment dyeing wastewater in garment production. The composite membrane research on CA and AC can provide new ideas for the research of these kinds of materials and contribute to its wider and convenient application in wastewater treatment.

2011 ◽  
Vol 356-360 ◽  
pp. 498-501
Author(s):  
Wen Jie Jin ◽  
Fan Chao Zeng ◽  
Han Xue ◽  
Ying Wang

A kind of new adsorption material for wastewater treatment was made of fly ash as the main composition, with addition of sodium silicate, cement and pore forming material as the accessory materials, etc. Three kinds of practical wastewater were treated by using the new material, they were printing and dyeing wastewater, papermaking wastewater and coking wastewater, respectively. The results showed that removal COD efficiencies of the three kinds of wastewater were 57.89%, 71.43%, 80%, respectively, removal color efficiencies were 90%, 92%, 92%, respectively. The new developed material was mainly used for advanced treatment of the effluent water after biochemical process. It will be a substitute for activated carbon materials and have preferable application prospect.


2021 ◽  
Vol 261 ◽  
pp. 04005
Author(s):  
Emmanuel Nkudede ◽  
Husseini Sulemana ◽  
Bo Zhang ◽  
Kaida Zhu ◽  
Shan Hu ◽  
...  

Owing to its widespread and persistent usage, methylene blue (MB) is an environmental substance, mostly found in the printing and dyeing industry that raises concerns in the environment recently by posing significant threat to human life and the ecosystem as a whole. Thus, there is the need to effectively manage and treat the wastewater from these industries before reaching to the available water sources. Ozonation treatment is very efficient in treating printing and dyeing wastewater (MB) and can be greatly improved by using micro-bubble technology. Microbubble dissolution is an effective way to improve the rate of ozone mass transfer. To discover these properties, a method was used to improve the mass transfer of ozone microbubbles, which was used to effectively treat simulated printing and dyeing wastewater. We investigated the effects of pH, water temperature, ozone flow, and other conditions on the dissolution and attenuation properties of ozone in methylene blue microbubble solutions. Treatment of simulated printing and dyeing wastewater (methylene blue) was investigated under various initial pH and ozone flow rates. A catalytic exhibition was performed towards the decolorization of methylene blue (MB) concentrations and the corresponding COD removal efficiency. Ozone depletion and pH levels played key roles in MB degradation. Under high pH level of 11.01, the rate of removal of COD was 93.5%. Ozone dosage also has direct effect on COD removal efficiency and decolorization. Higher ozone flow rates, 0.4 L/min and 0.5 L/min recorded more than 94% degradation of COD thus very effective and efficient. Also, ozone flow rates 0.3 L/min, 0.4 L/min and 0.5 L/min with initial pH, 7.03, 6.63 and 6.36 decreased to 3.43, 3.49 and 3.44 after reaction processes which clearly shows that with high ozone dosage, pH reduces considerably.


2020 ◽  
Vol 44 (25) ◽  
pp. 10719-10728
Author(s):  
Jian He ◽  
Hongyan Fu ◽  
Pan Wu ◽  
Zehao Lin ◽  
Ya Zeng ◽  
...  

Photocatalytic performance of Ag2O was greatly improved by adjusting the crystal plane structure and size with pyridine, which promoted the application of Ag2O to actual industrial printing and dyeing wastewater treatment systems.


2014 ◽  
Vol 955-959 ◽  
pp. 383-386 ◽  
Author(s):  
Ming Zhong Hu ◽  
Ya Nan Tang ◽  
Xiao Yu Wang

The paper mainly summarizes the method of immobilized microorganism£¬selection the carrier, and application of immobilization technology and wastewater treatment progress. Ammonia-nitrogen wastewater and refractory organic wastewater, heavy metal wastewater, printing and dyeing wastewater, oily wastewater and several kinds of wastewater treatment of immobilized are introduced respectively. And points out what the problem should be solved that applied the laboratory application to the real engineering practice.


RSC Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 4587-4592 ◽  
Author(s):  
Peng Zhang ◽  
Youpeng Qu ◽  
Jia Liu ◽  
Yujie Feng

A novel design of membrane air-cathode (MAC) with a double activated carbon layer was developed and served as a filtration cathode in a single chambered microbial fuel cell.


2020 ◽  
Vol 213 ◽  
pp. 01031
Author(s):  
Dagang Li ◽  
Zhiwen Wang

A continuous and structured porous adsorbent named GO/PAM was synthesised by one-step copolymerization of graphene oxide (GO) and acrylamide (AM) in amorphous region initiated by redox agent consisting of hydrogen peroxide (H2O2) and ascorbic acid (VC) at -20°C. The dynamic adsorption characteristics of methylene blue (MB) in GO/PAM structured adsorption medium were investigated. With the introduction of GO which rich in —OH and —COOH groups, the adsorption capacities were 178.65 mg/g~201.58 mg/g. Structured continuous adsorption medium was prepared by one-step polymerization of crystallization, in order to replace traditional bulk resin and ion exchange resin in the treatment of printing and dyeing wastewater.


Sign in / Sign up

Export Citation Format

Share Document