Optimization Study on Stability of Dragline Stripping Bench and Mining Parameters of Dragline Stripping Technology

2011 ◽  
Vol 361-363 ◽  
pp. 183-187
Author(s):  
Xiao Ren Mei

Heidaigou Surface Coal Mine (HSCM) is a large surfaces coal mine that first uses the throwing blasting - dragline stripping technology. Lots of new demanding prompt solution issues appears in HSCM without any successful experience in China, such as the stability of dragline stripping bench, the design and implementation of throwing blasting parameters, and the optimization of dragline stripping technology parameters. Rigid Body Limit Equilibrium Method (RBLEM) was used to study the safety and stability of dragline solid high bench and dragline stripping loosen bench under different workface parameters and influence factors. The safe operation parameters of dragline stripping bench are proposed. The dozer lowered height of the stripping bench, the width of extended bench and dragline operation parameters are optimized using the Optimization System of Dragline Stripping Technology (OSDST). The results can provide the decision support for HSCM.

1989 ◽  
Vol 26 (2) ◽  
pp. 235-245 ◽  
Author(s):  
D. Stead ◽  
R. Singh

The stability of loosewall slopes in surface coal mines is an important factor in the successful exploitation of surface coal mine reserves. Loosewall instability must be avoided not only to ensure negligible risk to both personnel and excavation plant but also to prevent increased production costs. In 1976 the United Kingdom National Coal Board Opencast Executive initiated a programme of slope stability research projects at the Mining Engineering Department of the University of Nottingham. This paper examines the data collected on loosewall slope failures over the last 10 years. The results of a preliminary programme of back analyses of selected loosewall instabilities using limit equilibrium techniques are discussed. Key words: loosewall, coal, database, back analysis.


Author(s):  
M LOSKIN

Problems of providing the population and agricultural production by qualitative potable and process water in the Central Yakutia are covered. This territory belongs to the region with acute shortage of water resources which is always a limiting factor of development of agricultural production. For the solution of this burning issue in the 80th years of the last century along the small rivers the systems of hydraulic engineering constructions providing requirements with process water practically of all settlements of the Central Yakutia were constructed. At a construction of all hydraulic engineering buildings the method of construction with preservation of soils of the basis of constructions in a frozen state was applied. When warming the climate which is observed in recent years hydraulic engineering constructions built in regions of a wide spread occurance of breeds of an ice complex and with the considerable volume of water weight, were especially vulnerable. On character and a design they experience continuous threat of damage and demand very attentive relation from the operating organizations. Taking this into account, safe operation of hydraulic engineering constructions in a zone of distribution of permafrost breeds demands new approaches. The article examines features of hydraulic engineering constructions’ operation of agricultural water supply objects in the Central Yakutia. Distinctiveness of hydraulic engineering constructions’ operation is that stability of constructions is intimately bound to temperature impact of a reservoir on ground dams’ body and the basis of constructions. The possibility of inclusion of ways for an intensification of a freezing of constructions in the structure of operational actions is studied. The new method on safe operation of hydraulic engineering constructions as prewinter abatement of the water level in a reservoir accounting volumes and norms of water consumption of the settlement is offered.


2016 ◽  
Vol 53 (9) ◽  
pp. 1522-1532 ◽  
Author(s):  
Farshid Vahedifard ◽  
Shahriar Shahrokhabadi ◽  
Dov Leshchinsky

This study presents a methodology to determine the stability and optimal profile for slopes with concave cross section under static and seismic conditions. Concave profiles are observed in some natural slopes suggesting that such geometry is a more stable configuration. In this study, the profile of a concave slope was idealized by a circular arc defined by a single variable, the mid-chord offset (MCO). The proposed concave profile formulation was incorporated into a limit equilibrium–based log spiral slope stability method. Stability charts are presented to show the stability number, MCO, and mode of failure for homogeneous slopes corresponding to the most stable configuration under static and pseudostatic conditions. It is shown that concave profiles can significantly improve the stability of slopes. Under seismic conditions, the impact of concavity is most pronounced. Good agreement was demonstrated upon comparison of the results from the proposed method against those attended from a rigorous upper bound limit analysis. The proposed methodology, along with recent advances in construction technology, can be employed to use concave profiles in trenches, open mine excavations, earth retaining systems, and naturally cemented and stabilized soil slopes. The results presented provide a useful tool for preliminary evaluation for adopting such concave profiles in practice.


2018 ◽  
Vol 29 (10) ◽  
pp. 3456-3468 ◽  
Author(s):  
Martin John Haigh ◽  
Heather Reed ◽  
Margaret D'Aucourt ◽  
Alison Flege ◽  
Mike Cullis ◽  
...  

2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2010 ◽  
Vol 146-147 ◽  
pp. 460-465 ◽  
Author(s):  
Sheng Hui Guo ◽  
Dong Bo Li ◽  
Li Jun Liu ◽  
Jin Hui Peng ◽  
Li Bo Zhang ◽  
...  

The stability is one most important product performance index, which can directly determine the quality of the partially stabilized zirconia (PSZ), and the stability of PSZ is always fluctuating in the commercial process, so how to accurately, quickly and easily predict the stability of PSZ in the preparation process is very important. In the present paper, a new mathematical model to predict the stability of PSZ was proposed, based on statistical theory (SLT) and support vector machine (SVM) theory, which relates the stability of PSZ and the influence factors, such as the holding temperature, rising rate of temperature, holding time, decreasing rate of temperature and hardening temperature. Typical data collected from commercial process were collected for the training samples and test samples. Then testing and analyzing was done. The results showed that the max relative error was 1.80%, the least relative error was 0%, and the average relative error was 0.58%. It is accurate and reliable to predict the stability of PSZ by SVM model. Besides, multiple influence factors can be comprehensively considered in the SVM model, thus a new highly effective method for predicting the stability of PSZ is provided for commercial application.


Sign in / Sign up

Export Citation Format

Share Document