Synthesis and Application of Novel Heavy Metal Ions Chelator

2011 ◽  
Vol 374-377 ◽  
pp. 937-940
Author(s):  
Zhuan Nian Liu ◽  
Ye Jing Song ◽  
Xiao Gang Han

Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents. The effects of reaction parameters (sodium hydroxide, material ratio, temperature and contact time) were monitored to specify the best synthesis conditions. PUS was chemically characterized by means of infrared spectroscopy (FTIR). The simultaneous chelation performance of PUS towards selected heavy metals ions, nickel, copper, lead, cadmium and zinc, was discussed, and Ni2+, Cu2+, Pb2+, Zn2+ can be chelated better especially, indicating that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.

2019 ◽  
Vol 70 (9) ◽  
pp. 3167-3175
Author(s):  
Claudia Maria Simonescu ◽  
Daniela Cristina Culita ◽  
Virgil Marinescu ◽  
Christu Tardei ◽  
Dorinel Talpeanu

Mining activities have a high negative impact on the environment and on human health. Environmental impacts can result in contamination of surface water, groundwater, soil and air. Large volumes of wastewater produced by mining activities have to be remediated before being discharged into the environment. Due to the complex composition of wastewater coming from the mining industry and because their negative impacts, numerous remediation techniques have been applied. Adsorption is one of the most extensively used ways to remediate mining wastewater as a consequence of its low cost, easiness to be performed, and also due to the wide variety of materials (natural and synthetic) that can be use as adsorbents. Hydroxyapatite (HAP, Ca10(PO4)6(OH)2), a naturally occurring form of calcium phosphate has a good capacity to remove heavy metal ions from aqueous solutions due to its excellent properties. By preparing hydroxyapatite using different synthesis methods, its properties can be manipulated in order to increase the adsorption properties and reactivity. Herein, we reported synthesis of hydroxyapatite (HAP) samples using different synthesis conditions to establish the effect of synthesis conditions onto HAP properties. The HAP samples prepared have been characterized by the use of X-ray diffraction, FT-IR spectroscopy, specific surface measurements, Scanning Electron Microscopy (SEM). The stoichiometric compounds with high degree of crystallinity, low average particle diameter values, and low specific surface have been prepared by the solid state reaction and high calcination temepratures. The addition of surfactant (dispersant) has resulted in an increase in the specific surface area, which will result in an increase in the retention capacity of heavy metal ions in wastewater. The adsorbents prepared were used to remediate mine water. Results showed that non-calcinated HAP samples have a higher heavy metals adsorption capacity compared to HAP samples calcinated at 600 �C and 900 �C. The HAP samples prepared in presence of surfactant exhibit a higher heavy metals adsorption capacity than samples prepared in absence of surfactant. The values of the retention capacity differ depending on the nature of the metal ion: QMn(II) ] QFe(III) ] QZn(II) ] QPb(II) ] QNi(II). A change in the pH of mine water from 2.6 to 5.5 has occur that means that the metal ion retention mechanism goes through chemical reactions. The metal ions retention capacity suggests application of hydroxyapatite for remediation of mining wastewater.


2021 ◽  
Vol 904 (1) ◽  
pp. 012009
Author(s):  
A W Abd Byty ◽  
M A Gharbi ◽  
A H Assaf

Abstract Toxic metal pollutants in groundwater should be identified to prevent future health risks. In this paper, the presence of heavy metals in groundwater in the western region of Iraq was investigated. The heavy metals concentrations, including Ni2+, Co2+, Zn2+, Pb2+, Cr3+, Cd2+, As3+ and Hg2+ were explored in twenty selected aquifers near Rutba City and the results were presented as spatial distribution maps. Findings indicate that contamination with the investigated heavy metal ions possesses a serious threat to the study area’s groundwater quality when compared to WHO and IEPA guideline values. Thus, a new approach to remove or adsorb heavy metal ions can be developed for large-scale production and the safe use of these aquifers water. Results revealed that the highest concentrations in mg/L1 of 2.312 in w19, 1.098 in w2, 5.78 in w17, 0.292 in w9, 3.349 in w5, 0.32 in w13, 0.074 in w11 and 5.622 in w1 for Zn2+, Cr3+, As3+, Pb2+, Ni2+, Co2+, Cd2+ and Hg2+ were recorded, respectively.


2018 ◽  
Vol 70 ◽  
pp. 11-23 ◽  
Author(s):  
Oleg Marenkov ◽  
Mykola V. Prychepa ◽  
Julia Kovalchuk

In the experiment with marbled crayfishProcambarusvirginalis(Lyko, 2017), chronic effects of various concentrations of heavy metal ions on the physiological state and enzyme activity were investigated. The obtained results showed that among the investigated heavy metals nickel ions influenced the weight indexes and mortality of crustaceans the most negatively. According to the results of the research, significant changes were noted in the individual biochemical parameters of marbled crayfish under the influence of manganese, lead and nickel ions. The most significant changes in the activity of lactate dehydrogenase were detected in muscle tissues affected by manganese and nickel ions. A significant decrease in the activity of succinate dehydrogenase in muscle of marbled crayfish was determined after the action of heavy metal ions. Investigation of changes in the activity of alkaline phosphatase under the influence of the ions of manganese, lead and nickel has its own characteristics, which indicates certain violations in the tissues of cell membranes. Changes in the activity of enzymes were also reflected in the overall protein content. Changes in these parameters may indicate a rapid biochemical response of crustaceans to the toxic effects of heavy metals.


2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


Author(s):  
А.К. Стрелков ◽  
С.В. Степанов ◽  
О.Н. Панфилова ◽  
А.В. Арбузов

Представлены результаты исследований сорбции ионов тяжелых металлов глиносодержащими сорбентами из сточных вод гальванического производства. Цель испытаний, проведенных на пилотной установке, – разработка технологической схемы для доочистки сточных вод от ионов тяжелых металлов и извлечения отработанного сорбента с применением намывного патронного фильтра со слоем перлита. В испытаниях использовались: термически модифицированный сорбент на основе природных материалов – модифицированная глина, а также смесевый сорбент, состоящий из монтмориллонита, торфа и доломита в соотношении 5:4:1 без термической обработки. Исследования проводились по восьми ионам тяжелых металлов в диапазоне низких концентраций, характерных для сточных вод, поступающих на доочистку после отстаивания с корректировкой рН. Основные технологические параметры доочистки: pH8; продолжительность контакта сорбента с обрабатываемыми водами 90 мин, доза сорбентов 1–1,6 г/л. Отделение отработанного сорбента от очищенной воды было предусмотрено в две ступени – отстаиванием и фильтрованием на патронном намывном фильтре. Введение коагулянта «Аква-АуратÔ-30» дозой 40 мг/л по Al2O3 позволило снизить концентрацию взвешенных веществ в осветленных сточных водах, подаваемых на намывные фильтры, до 8 мг/л для модифицированной глины и 15 мг/л для смесевого сорбента. Удельная производительность намывного слоя составила 23 м3/(ч×м2), расчетная удельная нагрузка по взвеси на поверхность фильтра составила для модифицированной глины 850 г/м2, для смесевого сорбента – 680 г/м2. Расчетная продолжительность фазы фильтрования намывного слоя при использовании предварительного реагентного отстаивания составила 4,6 и 2 ч для модифицированной глины и смесевого сорбента соответственно. Обеспечена эффективность очистки сточных вод от ионов тяжелых металлов на уровне ПДК для водных объектов рыбохозяйственного значения. The results of studies of the sorption of heavy metal ions by clay-containing sorbents from plating effluents are presented. The purpose of the tests carried out in a pilot plant was developing a process scheme for the removal of heavy metal ions from effluents and extraction of the spent sorbent in a precoat cartridge filter with a layer of perlite. The materials used in the tests were as follows: thermally modified sorbent based on natural material, i. e., modified clay, as well as mixed sorbent consisting of montmorillonite, peat and dolomite in a ratio of 5:4:1 without heat treatment. The studies were carried out on eight ions of heavy metals in the low concentration range typical for the effluent coming for tertiary treatment after sedimentation with pH adjustment. The main process parameters of tertiary treatment were: pH 8; the duration of the sorbent contact with the effluent was 90 min, the dose of sorbents was 1–1.6 g/l. The separation of the spent sorbent from the effluent was executed in two stages – sedimentation and filtration in a precoat cartridge filter. The addition of Aqua-AuratTM-30 coagulant with a dose of 40 mg/l as Al2O3provided for reducing the concentration of suspended solids in the clarified effluent supplied to the precoat filters to 8 mg/l for modified clay and 15 mg/l for the mixed sorbent. The specific productivity of the alluvial layer was 23 m3/(h‧m2), the specific load of the suspension on the filter surface was 850 g/m2for modified clay, and 680 g/m2 for mixed sorbent. The estimated duration of the filtration phase of the alluvial layer while using preliminary chemical sedimentation was 4.6 and 2 h for the modified clay and mixed sorbent, respectively. The efficiency of removing heavy metal ions from effluents was provided at the level of the maximum permissible concentration for fishery water bodies.


1970 ◽  
Vol 26 ◽  
pp. 31-39 ◽  
Author(s):  
O. A. Ekpete ◽  
F. Kpee ◽  
J. C. Amadi ◽  
R. B. Rotimi

The removal of heavy metal ions Cr (VI) and Zn (II) from aqueous solution using theskin of orange peel (Citrus sinensis) as an adsorbent under different experimentalconditions was investigated in this study. The concentrations of the metal ions adsorbedwere determined by atomic absorption spectroscopic (AAS) method. The parametersinvestigated were temperature, contact time, adsorbent dosage, initial metal ionsconcentration and pH. It was observed that the white inner skin of orange removed more ofCr (VI) than Zn (II) metal ions in all the adsorption experiments. The optimum removal ofthe Cr (VI) and Zn (II) metal ions occurred at pH 3 and at temperature 30°C. Application ofthe Langmuir isotherm to the systems yielded maximum adsorption capacity of 8.068 (mg/g)and 1.078 (mg/g) for Cr (VI) and Zn (II) metal ions respectively.Keywords: Orange peel; Adsorption; Heavy metals; LangmuirDOI: 10.3126/jncs.v26i0.3628Journal of Nepal Chemical SocietyVol. 26, 2010Page:31-39


2015 ◽  
Vol 72 (9) ◽  
pp. 1662-1666 ◽  
Author(s):  
Jianjun Ye ◽  
Henglin Xiao ◽  
Benlin Xiao ◽  
Weisheng Xu ◽  
Linxia Gao ◽  
...  

Bioremediation is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. In this study, red algae Porphyra leucosticta was examined to remove Cd(II) and Pb(II) ions from wastewater through biological enrichment and biological precipitation. The experimental parameters that affect the bioremediation process such as pH, contact time and biomass dosage were studied. The maximum bioremediation capacity of metal ions was 31.45 mg/g for Cd(II) and 36.63 mg/g for Pb(II) at biomass dosage 15 g/L, pH 8.0 and contact time 120 minutes containing initial 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution. Red algae Porphyra leucosticta biomass was efficient at removing metal ions of 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution with bioremediation efficiency of 70% for Cd(II) and 90% for Pb(II) in optimal conditions. At the same time, the removal capacity for real industrial effluent was gained at 75% for 7.6 mg/L Cd(II) and 95% for 8.9 mg/L Pb(II). In conclusion, it is demonstrated that red algae Porphyra leucosticta is a promising, efficient, cheap and biodegradable sorbent biomaterial for reducing heavy metal pollution in the environment and wastewater.


2017 ◽  
Vol 43 (2) ◽  
pp. 3-9 ◽  
Author(s):  
Magdalena Bobik ◽  
Irena Korus ◽  
Lidia Dudek

Abstract Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI), Pb(II), Cr(III), Cu(II), Zn(II), Ni(II) and Cd(II). The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD), the nanosized crystallites in the sample were agglomerated (SEM) and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET). The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Abate Ayele ◽  
Yakob Godebo Godeto

Heavy metals generated mainly through many anthropogenic processes, and some natural processes have been a great environmental challenge and continued to be the concern of many researchers and environmental scientists. This is mainly due to their highest toxicity even at a minimum concentration as they are nonbiodegradable and can persist in the aquatic and terrestrial environments for long periods. Chromium ions, especially hexavalent ions (Cr(VI)) generated through the different industrial process such as tanneries, metallurgical, petroleum, refractory, oil well drilling, electroplating, mining, textile, pulp and paper industries, are among toxic heavy metal ions, which pose toxic effects to human, plants, microorganisms, and aquatic lives. This review work is aimed at biosorption of hexavalent chromium (Cr(VI)) through microbial biomass, mainly bacteria, fungi, and microalgae, factors influencing the biosorption of chromium by microorganisms and the mechanism involved in the remediation process and the functional groups participated in the uptake of toxic Cr(VI) from contaminated environments by biosorbents. The biosorption process is relatively more advantageous over conventional remediation technique as it is rapid, economical, requires minimal preparatory steps, efficient, needs no toxic chemicals, and allows regeneration of biosorbent at the end of the process. Also, the presence of multiple functional groups in microbial cell surfaces and more active binding sites allow easy uptake and binding of a greater number of toxic heavy metal ions from polluted samples. This could be useful in creating new insights into the development and advancement of future technologies for future research on the bioremediation of toxic heavy metals at the industrial scale.


Sign in / Sign up

Export Citation Format

Share Document