DFIG Wind Power Generation Based on Direct Two-Stage Matrix Converter

2011 ◽  
Vol 383-390 ◽  
pp. 3578-3585
Author(s):  
Jun Rui Wang ◽  
Yan Ru Zhong

In this paper, a topology for a doubly-fed induction generator (DFIG) using a direct Two-stage Matrix Converter (TSMC), connected between the stator and the rotor, is presented. The input stage is connected to the grid and provides the required dc voltage for the output stages. Space vector modulation is used for the input stage producing the maximum dc voltage, with unity power factor operation at the TSMC grid-side input. Each of the output stage is connected to the rotor of a DFIG. The control of the generator rotor currents is carried out using standard vector control approach with a reference frame aligned with stator flux. The entire system is modeled and the results are presented to show the feasibility of the proposed scheme.

2014 ◽  
Vol 960-961 ◽  
pp. 1225-1229
Author(s):  
Xing Wu Yang ◽  
Hong Chao Ji ◽  
Wei Gan

The paper proposes a AC and DC mixed output VPS(vehicle power supply). It is composed of a two-stage circuit with the input stage and the output stage. The input stage contains a single-phase PWM inverter, a HFT (high-frequency transformer) and an uncontrolled rectifier. The single-phase PWM inverter adopts the open-loop control strategy to convert the low DC voltage into a high-frequency one with square wave. The HFT enhances the voltage and insulates the low-voltage side from the high-voltage side. The uncontrolled rectifier transforms the square voltage into DC voltage. In the output stage, one output uses single-phase PWM inverter and the other uses a DC chopper, both of which adopt the double-loop PWM control mode. The mode consists of an outer voltage loop and an inner current loop to produce desirable voltage and power. With the two-stage control strategy, ideal output currents and the output voltages are obtained, and the input power factor is controllable. The VPS model is established on MATLAB/SIMULINK, and this system is also implemented in laboratory based on DSP TMS320F28335. The results of simulation and experiment verify the proposed VPS system.


Author(s):  
Danyun Li ◽  
◽  
Quntai Shen ◽  
Zhentao Liu ◽  
Fang Liu ◽  
...  

A hybrid modulation strategy (HMS) for a two-stage matrix converter (TSMC) is presented in this paper. According to the variation of voltage transfer ratio, different combinations of modulation modes for rectifier-side converter (RSC) and inverter-side converter (ISC) of TSMC are adopted. Two different current space vector modulation methods are used for RSC to obtain maximum and minor DC voltages. The power loss of TSMC is reduced based on the minor DC voltage. In addition to the linear space vector modulation for ISC, an overmodulation method is presented in order to increase the voltage transfer ratio of TSMC. HMS ensures smooth switching between different modulation modes and makes the best use of the advantage of these modes. Finally, HMS is applied in the case where TSMC is used as an AC-excitation converter for doubly fed induction generator (DFIG) to achieve maximum power point tracking (MPPT). The simulation results confirm the accuracy and feasibility of HMS and the good performance of the MPPT operation of DFIG excited by TSMC.


2011 ◽  
Vol 58 (10) ◽  
pp. 4664-4674 ◽  
Author(s):  
Rubén Pena ◽  
Roberto Cardenas ◽  
Eduardo Reyes ◽  
Jon Clare ◽  
Patrick Wheeler

Author(s):  
Srinath Vanukuru ◽  
Sateesh Sukhavasi

Wind Energy is gaining interest now-a – days as one of the most important renewable sources of energy due to its ecofriendly nature. But the major disadvantage lies in variable speed wind generation and this paper gives a study on control of Wind driven doubly fed Induction Generators. The speeds above and below Synchronous speeds are obtained using a bidirectional power flow converter. By using this reactive power is controlled and hence the overall Power factor of system can be kept at unity under varying load conditions. . This paper presents simulation results of a Grid-connected DFIG. A switch-by-switch representation of the PWM converters with a carrier-based Sinusoidal PWM modulation for both rotor- and stator-side converter has been proposed. Stator-Flux Oriented vector control approach is deployed for both stator- and rotor-side converters to provide independent control of active and reactive power and keep the DC-link voltage constant. A 7.5 KW generator is designed and its effectiveness in controlling is verified in different operating conditions i.e. above and below synchronous speeds.


2019 ◽  
Vol 9 (12) ◽  
pp. 2522
Author(s):  
Lee ◽  
Yoo ◽  
Yoon ◽  
Jang

In order to solve the problems brought upon by off-shore wind-power plants, it is important to improve fault ride-through capability when an on-shore fault occurs in order to prevent DC overvoltage. In this paper, a coordinated control strategy is implemented for a doubly-fed induction generator (DFIG)-based off-shore wind farm, which connects to on-shore land by a modular multilevel converter (MMC)-based high voltage direct current (HVDC) transmission system during an on-shore fault. The proposed control strategy adjusts the DC voltage of the off-shore converter to ride through fault condition, simultaneously varying off-shore AC frequency. The grid-side converter detects the frequency difference, and the rotor-side converter curtails the output power of the DFIG. The surplus energy will be accumulated at the rotor by accelerating the rotor speed and DC link by rising DC voltage. By the time the fault ends, energy stored in the rotor and energy stored in the DC capacitor will be released to the on-shore side to restore the normal transmission state. Based on the control strategy, the off-shore wind farm will ride through an on-shore fault with minimum rotor stress. To verify the validity of the proposed control strategy, a DFIG-based wind farm connecting to the on-shore side by an MMC HVDC system is simulated by PSCAD with an on-shore Point of Common Coupling side fault scenario.


Sign in / Sign up

Export Citation Format

Share Document