Automobile Reversing Radar Based on Ultrasonic Wave

2011 ◽  
Vol 383-390 ◽  
pp. 366-371
Author(s):  
Xin Na Wang ◽  
Qian Gao ◽  
Ping Chuan Zhang

Automobile reversing process should be paying more attention for security. This paper analyzes the principle of ultrasonic distance measurement, made simple and practical automobile reversing radar, in which the SPCE061A MCU / DSP of high-performance 16-bit microprocessor was used as the control core and the ultrasonic sensors modular for detection signal. The system design is the modularization structure, so as to simplify the debugging effort, well done eventually reversing radar. The experiments shows that the detection range may be up to 15cm-200cm, the error of distance is only 5cm, fully meet the practical requirements, and low cost.

2015 ◽  
Vol 2015 (1) ◽  
pp. 000766-000770 ◽  
Author(s):  
K.-F. Becker ◽  
L. Georgi ◽  
R. Kahle ◽  
S. Voges ◽  
F. Brandenburger ◽  
...  

For radar applications, the W-band frequency range (75 – 110 GHz) is a good candidate for high-resolution distance measurement and remote detection of small or hidden objects in distances of 10 cm to ≫ 20 m. As electromagnetic waves in this frequency range can easily penetrate rough atmosphere like fog, smoke or dust, W-band radars are perfectly suited for automotive, aviation, industrial and security applications. Additional benefit is that atmosphere has an absorption minimum at 94 GHz, so relative small output power is sufficient to achieve long range coverage. By combining and enhancing knowledge from the disciplines of heterogeneous integration technology and compound semiconductor-technology, the Fraunhofer Institutes IAF, IPA and IZM developed a miniaturized and low cost 94 GHz radar module. Result of this approach is a highly miniaturized radar module built using a modular approach. The radar components are mounted on a dedicated RF-NF-hybrid PCB while the signal processing is done on a separate board stacked below. This hybrid RF-module is combined with highly integrated digital processing PCB via micro connectors in a way that the radar system and an adapted conical HDPE-lens fit into an aluminum housing of 42×80×27 mm3 with a weight of only 160 grams for the whole module. The paper will describe the technological basis for such a frequency modulated continuous wave [FMCW] W-band radar module and describe in detail the technological features that enabled the assembly of such a miniaturized but high-performance system. The module yields an evaluated distance measurement accuracy of 5 ppm (5 μm deviation per meter target distance) while its low weight and small dimensions pave the way for a variety of new applications, including mobile operation.


2013 ◽  
Vol 198 ◽  
pp. 90-95 ◽  
Author(s):  
Krzysztof J. Kaliński ◽  
Cezary Buchholz

Current tendency in mechatronic design requires the use of comprehensive development of an environment, which gives the possibility to prototype, design, simulate and integrate with dedicated hardware. The paper discusses the Hardware-In-the-Loop Simulations (HILS) mechatronic technique [, used during the design of the surveillance system based on energy performance index [. The presented test configuration (physical controller emulated virtual research object) allows authors to verify responses (in the LabVIEW [) of the mobile platform model, to the optimal control commands (torques), generated by the Real Time controller. Defined energy performance index, supported by the correction velocities, controls the emulated platform while moving along three different trajectories. The demonstrated test results are compared with desired values obtained during numerical computation process of kinematic and dynamic equations of the presented model. The authors investigation of the HILS affected final optimisation of the motion surveillance system design. Real time requirements enforced authors to decrease sampling time of control command (signal generation frequency) and establish high performance execution strategy for on-line algorithm (algorithm execution performed both in Real Time processor and in the FPGA - Field Programmable Gate Array) [. The performed simulations confirmed that the HILS is a powerful technique, which improves system design making that more efficient and low cost consuming.


2012 ◽  
Vol 433-440 ◽  
pp. 835-839
Author(s):  
Hong Guang Zhang ◽  
Yuan An Liu ◽  
Bi Hua Tang ◽  
Yan Qin ◽  
Zhi Peng Jia

Wireless network distributed systems have become commonplace due to the wide availability of low-cost, high performance computers and network devices. With the increase of slave nodes of distributed systems, the performance of distributed systems often fall significantly or management infrastructure of distributed systems often does not scale well. Wireless network distributed system design method of using artificial life cooperation principle is proposed. Design principle of mutual cooperation among slave nodes and open wireless communication links of wireless network distributed systems make the topology of distributed system is able to handle the dynamic increase of system size and recover the unexpected failure of system services. The proposed design method for constructing distributed systems could optimize the scalability and reliability of distributed systems.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1389 ◽  
Author(s):  
Joon Rhee ◽  
Jiwon Seo

Curb detection and localization systems constitute an important aspect of environmental recognition systems of autonomous driving vehicles. This is because detecting curbs can provide information about the boundary of a road, which can be used as a safety system to prevent unexpected intrusions into pedestrian walkways. Moreover, curb detection and localization systems enable the autonomous vehicle to recognize the surrounding environment and the lane in which the vehicle is driving. Most existing curb detection and localization systems use multichannel light detection and ranging (lidar) as a primary sensor. However, although lidar demonstrates high performance, it is too expensive to be used for commercial vehicles. In this paper, we use ultrasonic sensors to implement a practical, low-cost curb detection and localization system. To compensate for the relatively lower performance of ultrasonic sensors as compared to other higher-cost sensors, we used multiple ultrasonic sensors and applied a series of novel processing algorithms that overcome the limitations of a single ultrasonic sensor and conventional algorithms. The proposed algorithms consisted of a ground reflection elimination filter, a measurement reliability calculation, and distance estimation algorithms corresponding to the reliability of the obtained measurements. The performance of the proposed processing algorithms was demonstrated by a field test under four representative curb scenarios. The availability of reliable distance estimates from the proposed methods with three ultrasonic sensors was significantly higher than that from the other methods, e.g., 92.08% vs. 66.34%, when the test vehicle passed a trapezoidal-shaped road shoulder. When four ultrasonic sensors were used, 96.04% availability and 13.50 cm accuracy (root mean square error) were achieved.


Author(s):  
R. Ramkumar ◽  
Sanjoy Deb

In this paper, a real-time low-cost geophone-based Elephant Footstep Vibration Detection and Identification (EFVDI) system is proposed. The system design started with a real-time low-cost generalized Footstep Vibration Recording and Analyzing (FVRA) system. A series of field experiments to record elephant footstep vibration (target) signals and other possible interfering ground vibration (noise) sources are conducted using the FVRA system. System’s actual field performance was evaluated in terms of maximum detection range, signal amplitude, detection ratio, signal frequency, signal time span, etc. Variations of system’s performance with several input parameters are also investigated. The recorded signals from target as well as noise sources are analyzed to extract different Signal Parameters (SPs). All SPs are saved in a Ground Vibration Signal Pattern Library (GVSPL) which is then used to frame accurate indigenous Elephant Identification Algorithm (EIA). The EIA is embedded in FVRA system to reshape it as specific Elephant Footstep Vibration Detection and Identification (EFVDI) system. The EFVDI system has successfully segregated elephant footsteps from other noise vibrations with high accuracy under simulated field experiment. The results from the proposed system will provide important data to the ongoing research of developing the much needed highly accurate Elephant Early Warning System (EEWS) in future.


Author(s):  
Gabriel de Almeida Souza ◽  
Larissa Barbosa ◽  
Glênio Ramalho ◽  
Alexandre Zuquete Guarato

2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document