Flow Patterns of Oil/Water Two-Phase Upflows in a Small Vertical Tube

2011 ◽  
Vol 396-398 ◽  
pp. 274-278
Author(s):  
Zhen Ying Zhao ◽  
Jia Hao Wang ◽  
Hai Yan Min ◽  
Li Min Yang ◽  
Ji He Yang

The flow patterns of oil/water two-phase upward flows in a small vertical tube with an internal diameter of 0.010 m were investigated by high speed video system. Using stainless steel tube as test section, transparent plastic tube as observing section and deionized water and kerosene (density of 796kg/m3) as working fluids, 5 flow patterns, i.e., annular, churn, slug, bubble and dispersed droplets, were observed under the experimental conditions. The transition boundaries of these flow patterns were compared with the literature and theoretical models of Taitel et al [1] for gas-liquid upward flows. There are some differences of the transition boundaries between the present study and the literature of either gas-liquid or liquid-liquid systems. The theoretical models of Taitel et al can well predict the transition boundaries from annular to churn and from churn to bubble.

2019 ◽  
Vol 9 (2) ◽  
pp. 346 ◽  
Author(s):  
Lei Li ◽  
Lingfu Kong ◽  
Beibei Xie ◽  
Xin Fang ◽  
Weihang Kong ◽  
...  

In the process of production logging interpretation, a water cut is one of the key factors to obtain the oil phase content in the oil well. In order to measure the water cut of the horizontal oil–water two-phase flow with low yield, the response characteristics of the combined capacitance sensor (CCS) are investigated under different flow patterns. Firstly, the measuring principles of coaxial, cylindrical, and CCS are introduced in detail. Then, according to the different flow pattern conditions of the horizontal oil–water two-phase flow, the response characteristics of the CCS are simulated and analyzed using the finite element method. Additionally, compared with the other two sensors, the advantages of the CCS are verified. Finally, the temperature and pressure calibration experiments are carried out on the CCS. The horizontal oil–water two-phase flow patterns in a low yield liquid level are divided in detail with a high-speed camera. Dynamic experiments are carried out in a horizontal pipe with an inner diameter of 125 mm on the horizontal oil–water two-phase flow experimental equipment. The simulation and experimental results show that the CCS has good response characteristics under different working conditions.


Author(s):  
R. E. M. Morales ◽  
M. J. da Silva ◽  
E. N. Santos ◽  
L. Dorini ◽  
C. E. F. do Amaral ◽  
...  

Multi-phase flow measurements are very common in industrial applications especially of the oil and gas industry. In order to study such pattern one can apply many different techniques such as capacitive probes, X-ray and gamma ray tomography, ultrasound transducers, wire-mesh sensors and high speed videometry. This article describes experimental study of water-air slug in horizontal pipes through non-intrusive image analysis technique. A flow test section comprising of a pipe of 26 mm internal diameter and 9 m long was employed to generate slug flows under controlled conditions. The behavior of the flow was studied using gas and liquid velocities between 0.3 m/s and 2 m/s with 6000 images (500×232 pixels) for each case. The algorithm comprises the automatic analysis of a sequence of frames in MatLab to measure flow characteristics such as Taylor bubble velocity and frequency applying morphological treatment. Finally, the parameters measured through the high speed videometry were compared with theoretical predictions showing that such method can be used to validate other types of sensors in experimental conditions.


Author(s):  
Guangyao Lu ◽  
Guisheng Zhao ◽  
Junsheng Ren ◽  
Wenyuan Xiang ◽  
Huaning Ai

Tube-bundle channels have been widely used in condenser-evaporator and other industrial heat-exchange equipments. The characteristics of two-phase flow patterns and their transitions for refrigerant R-113 through a vertical tube-bundle channel are experimentally investigated using high-speed camera. Experiments show that there are four main flow patterns in the tube-bundle channel, which are bubbly flow, bubbly-churn flow, churn flow and annular flow. And in the same cross-section of tube-bundle channels, it is shown that there might be different flow patterns in different sub-channels. The flow pattern transitions exhibit unsynchronized in different sub-channels. On the basis of experimental research, the flow pattern map is drawn and analyses are made on the comparison of differences between boiling flow patterns in circular tubes and those in tube-bundle channels.


Author(s):  
Jacqueline Barber ◽  
Khellil Sefiane ◽  
David Brutin ◽  
Lounes Tadrist

Boiling in microchannels remains elusive due to the lack of full understanding of the mechanisms involved. A powerful tool in achieving better comprehension of the mechanisms is detailed imaging and analysis of the two phase flow at a fundamental level. We induced boiling in a single microchannel geometry (hydraulic diameter 727 μm), using a refrigerant FC-72, to investigate several flow patterns. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous uniform heating and visualisation to be conducted. The data presented in this paper is for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.33×10−5 kg/s. In conjunction with obtaining high-speed images and videos, sensitive pressure sensors are used to record the pressure drop profiles across the microchannel over time. Bubble nucleation, growth and coalescence, as well as periodic slug flow, are observed in the test section. Phenomena are noted, such as the aspect ratio and Reynolds number of a vapour bubble, which are in turn correlated to the associated pressure drops over time. From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow visually the nucleation and subsequent both ‘free’ and ‘confined’ growth of a vapour bubble over time.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Wang ◽  
Wei Cheng ◽  
Kai Li ◽  
Chen Lou ◽  
Jing Gong

A systematic work on the prediction of flow patterns transition of the oil-water two-phase flows is carried out under a wide range of oil phase viscosities, where four main flow regimes are considered including stratified, dispersed, core-annular, and intermittent flow. For oil with a relatively low viscosity, VKH criterion is considered for the stability of stratified flow, and critical drop size model is distinguished for the transition of o/w and w/o dispersed flow. For oil with a high viscousity, boundaries of core-annular flow are based on criteria proposed by Bannwart and Strazza et al. and neutral stability law ignoring that the velocity of the viscous phase is introduced for stratified flow. Comparisons between predictions and quantities of available data in both low and high viscosity oil-water flow from literatures show a good agreement. The framework provides extensive information about flow patterns transition of oil-water two-phase flow for industrial application.


Author(s):  
H. Yang ◽  
T. S. Zhao ◽  
P. Cheng

Characteristics of gas-liquid two-phase flow patterns in a miniature square cross-section channel having a gas permeable sidewall have been investigated visually using a high-speed motion analyzer. The problem under consideration is encountered in the design of Direct Feed Methanol Fuel Cells (DMFC). The test section was a horizontally oriented rectangular transparent (Lucite material) channel with its lower wall consisting of a porous plate. Liquid was fed into the test section from its entrance, while gas was injected uniformly into the test section along the lower porous sidewall. The visual study shows the typical flow patterns found in the test section include bubbly flow, plug flow, slug flow, and annular flow. However, unlike the conventional co-current two-phase flow in a channel with gas and liquid uniformly entering from one of its ends, for the flow configuration considered in this work, it was found that two or three of the above mentioned flow patterns appeared simultaneously at different locations of the channel. The length of each flow pattern varied with the flow rates of liquid and gas. A distinct feature of annular flow for the present flow configuration is that small bubbles were continuously generated from the porous plate, which grew by blowing up the liquid film, formed a semi-sphere shape, and then ruptured and released gas into the core flow.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 51 ◽  
Author(s):  
Zeyad Almutairi ◽  
Fayez M. Al-Alweet ◽  
Yusif A. Alghamdi ◽  
Omar A. Almisned ◽  
Othman Y. Alothman

Experiments of gas–liquid flow in a circular pipe for horizontal and inclined positions (upward/downward) are reported. The characteristics of two-phase flow in terms of liquid holdup (ε(L)) and induced flow patterns are studied using three experimental techniques; time-averaged ε(L) from permittivity profiles using electrical capacitance tomography (ECT), instantaneous ε(L) using two fast-closing valves (TFCV), and high-speed camera images (HSCI) to capture/identify the formed flow patterns. Thus, this experimental setup enables the development of more well-defined flow patterns in gas–liquid two-phase flow and allows for multi-technique verification of the results. Taken from experimental measurements, a model is proposed to predict ε(L) for high and low situations. The correlations are a function of the hydrodynamic dimensionless quantities which provide hydrodynamic similarity. Regarding different pipe orientations, ε(L) predictions are comparable to ε(L) from experimental measurements with accepted accuracy: 88% of the predictions are within ±5–15% and 98% are below ±20%. The correlations also were validated by reported results and against correlations available in the literature and show higher prediction accuracy. It is confirmed that the kinematic similarity which is achieved by the gas–liquid velocity ratios and the inertial forces influence the flow pattern and the liquid holdup.


2016 ◽  
Vol 115 ◽  
pp. 135-148 ◽  
Author(s):  
Hassan Pouraria ◽  
Jung Kwan Seo ◽  
Jeom Kee Paik

Author(s):  
S. Alireza Hojati ◽  
Pedram Hanafizadeh

The flow patterns in two phase and multi-phase flows is a significant factor which influences many other parameters such as drag force, drag coefficient and pressure drop in pipe lines. One of the major streams in the gas and oil industries is oil-water two phase flow. The main flow patterns in oil-water flows are bubbly, slug, dual continuous, stratified and annular. In the present work flow patterns in two phase oil-water flow were investigated in a 0.5in diameter pipe with length of 2m. 3D simulation was used for this pipe and six types of mesh grid were used to investigate mesh independency of the simulation. The proposed numerical analyses were performed by a CFD package which is based both on volume of fluid (VOF) and Eulerian-Eulerian methods. The results showed that some flow patterns can be simulated better with VOF method and some other maybe in Eulerian-Eulerian method, so these two methods were compared with together for all flow patterns. The flow patterns may be a function of many parameters in flow. One of the important parameter which may affect flow patterns in pipe line is pipe inclination angle; therefore flow patterns in the different pipe inclination angles were investigated in two phase oil-water flow. The range of inclinations has been varied between −45 to +45 degree about the horizon. In the presented simulation oil is mixed with water via a circular hole at center of the pipe, the ratio of oil surface to water surface at entrance is 2/3 so water phase was considered as the main phase. Flow patterns were investigated for every angle of pipe and numerical results were compared with available experimental data for verification. Also the flow patterns simulated by numerical approaches were compared with available flow regime maps in the previous literatures. Finally, effect of pipe inclination angle and flow patterns on the pressure loss were investigated comprehensively.


Sign in / Sign up

Export Citation Format

Share Document