A Dynamic Approach to Image Steganography Using the Three Least Significant Bits and Extended Hill Cipher

2011 ◽  
Vol 403-408 ◽  
pp. 842-849 ◽  
Author(s):  
Gandharba Swain ◽  
Saroj Kumar Lenka

In this paper we propose a technique for secure communication between sender and receiver. We use both cryptography and steganography. We take image as the carrier to use steganography. We have extended the existing hill cipher to increase its robustness and used it as our cryptography algorithm. By using this extended hill cipher (a new block cipher) which uses a 128 bit key, we encrypt the secret message. Then the cipher text of the secret message is embedded into the carrier image in 6th, 7th and 8th bit locations of some of the selected pixels (bytes). The 8th bit in a pixel (byte) is called as the least significant bit (LSB). The pixel selection is done depending on the bit pattern of the cipher text. So for different messages the embedding pixels will be different. That means to know the pixels of the image where the cipher text is embedded we should know the cipher text bits. Thus it becomes a stronger steganography. As the pixels where we embed are chosen during the run time of the algorithm, so we say that it is dynamic steganography. After embedding the resultant image will be sent to the receiver, the receiver will apply the reverse process what the sender has done and get the secret message.

Author(s):  
Gandharba Swain ◽  
Dodda Ravi Kumar ◽  
Anita Pradhan ◽  
Saroj Kumar Lenka

In this paper we present a technique for secure communication between two parties Alice and Bob. We use both cryptography and steganography. We take image as the carrier to use steganography. By using our own substitution cipher called two square reverse we encrypt the secret information. Then the cipher text of the secret information is embedded into the carrier image in LSB (least significant bit) minus one position of some selected bytes. The byte selection is done depending on the bit pattern of the secret information. Thus the embedding locations are dependent on the secret message. So the intruder will face difficulties to locate the bits. After embedding the resultant image will be sent to the receiver, the receiver will apply the reverse operation what the sender has done and get the secret information.


2011 ◽  
Vol 403-408 ◽  
pp. 835-841 ◽  
Author(s):  
Gandharba Swain ◽  
Saroj Kumar Lenka

In this paper we are proposing a new Image steganography technique for secure communication between sender and receiver. At the sender we follow two steps. In the first step we encrypt the secret information by blowfish algorithm and in second step we embed the cipher text in LSB minus one and LSB (least significant bit) locations of some of the selected pixels (bytes) of the carrier image. One pixel is 8 bits in 8-bit gray scale. The selection of the pixels is done by a dynamic evaluation function. Depending on the cipher text bits, the dynamic evaluation function decides on which pixels the different cipher text bits are to be embedded. At the receiver also two steps are followed, first the cipher bits are retrieved from the image from the said locations and then it is decrypted by using the blowfish algorithm to get the secret information. As the embedding byte locations are decided based on bits of the cipher text, so it is dynamic steganography. This approach provides two levels of security, one at the cryptography level and the other at the steganography level. The proposed technique is experimented through a large number of experiments.


2020 ◽  
Author(s):  
Reshma V K ◽  
Vinod Kumar R S

Abstract Securing the privacy of the medical information through the image steganography process has gained more research interest nowadays to protect the privacy of the patient. In the existing works, least significant bit (LSB) replacement strategy was most popularly used to hide the sensitive contents. Here, every pixel was replaced for achieving higher privacy, but it increased the complexity. This work introduces a novel pixel prediction scheme-based image steganography to overcome the complexity issues prevailing in the existing works. In the proposed pixel prediction scheme, the support vector neural network (SVNN) classifier is utilized for the construction of a prediction map, which identifies the suitable pixels for the embedding process. Then, in the embedding phase, wavelet coefficients are extracted from the medical image based on discrete wavelet transform (DWT) and embedding strength, and the secret message is embedded into the HL wavelet band. Finally, the secret message is extracted from the medical image on applying the DWT. The experimentation of the proposed pixel prediction scheme is done by utilizing the medical images from the BRATS database. The proposed pixel prediction scheme has achieved high performance with the values of 48.558 dB, 0.50009 and 0.9879 for the peak signal to noise ratio (PSNR), Structural Similarity Index (SSIM) and correlation factor, respectively.


Author(s):  
Arpad Incze

AbstractThis paper contains a brief description of new approach regarding LSB steganography. The novelty of the method resides in the combination of LSB (Least Significant Bits) steganography with some primitives of the pixel-sieve/bit-sieve cryptographic method. In short, we propose to use two or more carrier images and the sieving algorithm, borrowed from the pixel sieve primitive, to determine which carrier image will receive the next set of bits of the secret message. While in classic LSB steganography the secret message must be encrypted prior to embed the information into the carrier image, in our proposal the message is scrambled between the shares in a pseudo random way. An attacker will need all the carrier images and the sieving key in order to reconstruct the original message. Also we recommend an alternative method in which instead of simply replacing the last bit/bits we use them as XOR keys to further enhance the security. Keywords: steganography, cryptography, secret sharing; visual cryptography, LSB.


2018 ◽  
Vol 31 (2) ◽  
pp. 193 ◽  
Author(s):  
Hussein L. Hussein

Concealing the existence of secret hidden message inside a cover object is known as steganography, which is a powerful technique. We can provide a secret communication between sender and receiver using Steganography. In this paper, the main goal is for hiding secret message into the pixels using Least Significant Bit (LSB) of blue sector of the cover image. Therefore, the objective is by mapping technique presenting a model for hiding text in an image. In the model for proposing the secret message, convert text to binary also the covering (image) is divided into its three original colors, Red, Green and Blue (RGB) , use the Blue sector convert it to binary,  hide two bits from the message in  two bits of the least significant bits of blue sector of the image.


2020 ◽  
Vol 4 (6) ◽  
pp. 15-26
Author(s):  
Abdullah Abdullah ◽  
Sardar Ali ◽  
Ramadhan Mstafa ◽  
Vaman Haji

Digital communication has become a vital part of daily life nowadays, many applications are using internet-based communication and here the importance of security rose to have a secure communication between two parties to prevent authorized access to sensitive data. These requirements led to a number of research in information security that has been done in the past two decades. Cryptography and steganography are the two main methods that are being used for information security. Cryptography refers to techniques that encrypt a message to be sent to a destination using different methods to be done. On the other hand, steganography is the science of hiding information from others using another cover message or media such as image, audio, video, and DNA sequence. This paper proposed a new method to hide information in an image using the least significant bit (LSB) based on Deoxyribonucleic Acid (DNA) sequence. To accomplish this, the proposed scheme used properties of DNA sequence when codons that consist of three nucleotides are translated to proteins. The LSB of two pixels from the image are taken to represent a codon and then translate them to protein. The secret message bits are injected into codons before the translation process which slightly distorts the image and makes the image less suspicious and hard to detect the hidden message. The experimental results indicate the effeteness of the proposed method.


Author(s):  
Pradeep Kumar Mallick ◽  
N.K. kamila

Demand of information security is increasing day by day with the exponential growth of Internet. The content of message is kept secret in cryptography, where as steganography message is embedded into the cover image. In this paper a system is developed in which cryptography and steganography are used as integrated part along with newly developed enhanced security model. In cryptography the process of encryption is carried out using symmetric block ciphers with linear algebraic equation to encrypt a message [1] and the obtained cipher text is hidden in to the cover image which makes the system highly secured. Least Significant Bit (LSB) technique is used for message hiding which replaces the least significant Bits of pixel selected to the hide the information. A large number of commercial steganographic programs use LSB as the method of choice for message hiding in 24-bit,8bit-color images, and gray scale images. It is observed from the simulation study that both methods together enhance security significantly.


2019 ◽  
Vol 5 (3) ◽  
pp. 261
Author(s):  
Yahya Risqi ◽  
Rudy Dwi Nyoto ◽  
Hafiz Muhardi

Image Steganography adalah teknik untuk menyisipkan pesan rahasia ke dalam suatu citra digital, sehingga secara kasat mata manusia tidak akan mengetahui keberadaan dari pesan rahasia tersebut. Tujuan dari penetilian ini adalah menggunakan citra QR Code sebagai secret yang diubah ke dalam mode bitonal dengan 1 bit pada tiap pikselnya kemudian dipecah menjadi dua bagian dan disisipkan kedalam blue channel di dual carrier image sehingga kapasitas dari pesan yang akan disisipkan dapat meningkat. Penyisipan pada dual carrier image juga dapat meningkatkan keamanan karena pesan dapat dikirim secara terpisah. Penyisipan pesan dilakukan dengan metode substitusi Least Significant Bit (LSB). Untuk mengevaluasi model steganography yang diteliti, digunakan pengujian MSE and PSNR, Hiding Capacity (HC), Histogram, recovery dan noise. Hasil pengujian menunjukkan dengan menggunakan citra PNG dan TIFF pada HC hingga 95% nilai PSNR tetap tinggi yaitu sebesar 56 dB, dengan tingkat recovery 100% dan tahan terhadap jenis noise salt and pepper.


2021 ◽  
Vol 8 (9) ◽  
pp. 373-377
Author(s):  
Alade Oluwaseun. Modupe ◽  
Amusan Elizabeth Adedoyin ◽  
Adedeji Oluyinka Titilayo

Steganography is the art and science of hiding information by embedding data into cover media. Numerous techniques are designed to provide the security for the communication of data over the Internet. A good steganographic algorithm is recognized by the performance of the techniques measured with the support of the performance metrics among which are PSNR, MSE, SSIM, robustness and capacity to hide the information in the cover image. In this paper a comparative analysis of Least Significant Bit (LSB), Most Significant Bit (MSB) and Pixel Value Differencing (PVD) image steganography in grayscale and colored images was performed. Three different cover images was used to hide secret message. A comparative performance analysis of LSB, MSB and PVD methods used in image steganography was performed using peak signal to noise ratio (PSNR), Mean square error (MSE) and Structural Similarity index (SSIM) as performance metrics. LSB technique gives higher PSNR and SSIM values than MSB and PVD method with lower MSE than the other two techniques. Future research can be geared towards investigating the embedding capacity, security, and computational complexity of each technique. Keywords: Least Significant Bit (LSB), Most Significant Bit (MSB), Pixel value differencing (PVD), PSNR, SSIM and MSE,


2015 ◽  
Vol 44 (3) ◽  
pp. 315-328 ◽  
Author(s):  
Khalid Darabkh ◽  
Iyad F. Jafar ◽  
Raed T. Al-Zubi ◽  
Mohammed Hawa

With the development of internet technologies and communication services, message transmissions over the internet still have to face all kinds of security problems. Hence, how to protect secret messages during transmission becomes a challenging issue for most of current researchers. It is worth mentioning that many applications in computer science and other related fields rely on steganography and watermarking techniques to ensure information safety during communication. Unlike cryptography that focuses on scrambling the secret message so that it cannot be understood, the main objective of steganography and watermarking is to communicate securely in such a way that the hidden data are not visible to the observer. In other words, it seeks for the imperceptibility of stego-images quality to an unintended party through embedding efficiently the secret message in a digital media such as image, video, or audio. In this paper, we propose a new steganographic method to embed the secret data inside a cover image based on least-significant-bit (LSB) replacement method. The embedding process predominantly concentrates on distributing the secret message inside one share of a color image to appear like a 3D geometric shape that is constructed according to well-analyzed geometric equations. The dimensions of the geometric shape are determined pursuant to the size of secret message. Data distribution process makes our method to be of a great interest as of being so difficult for the hackers or intruders to reconstruct the shape from stego-images, thereby the security is improved. Furthermore, we compare the performance of our approach with two other relevant approaches in terms of peak signal-to-noise ratio (PSNR) and payload. The contribution of our approach was immensely impressive.DOI: http://dx.doi.org/10.5755/j01.itc.44.3.8949


Sign in / Sign up

Export Citation Format

Share Document