Experimental Study of Property of Magnetic Nanoparticle Prepared in Different Temperatures

2011 ◽  
Vol 412 ◽  
pp. 155-158
Author(s):  
Fan Wang ◽  
De Cai Li ◽  
Meng Zhang ◽  
Zhi Li Zhang

For prepare magnetic liquids with good property, the authors prepared Magnetic Fe3O4 nanoparticles by co-precipitation in different temperatures including 60°C, 70°C, 80°C in this experiment and analyzed the product of Magnetic Fe3O4 nanoparticles by X-ray Diffraction Analysis, Transmission Electron Scanning, Saturation Magnetization Test and the result indicate that Magnetic Fe3O4 nanoparticles prepared at 70°C have good crystallinity and high saturation magnetization and suitable for prepare magnetic liquid.

2011 ◽  
Vol 345 ◽  
pp. 93-98
Author(s):  
Fan Wang ◽  
De Cai Li

For prepare magnetic liquids with good property, the authors prepared Magnetic Fe3O4 nanoparticles by co-precipitation and magnetic Fe3O4 nanoparticles were modified by the surfactant. Analyzed the product of Magnetic Fe3O4 nanoparticles by X-ray Diffraction Analysis, Transmission Electron Scanning, Saturation Magnetization Test and the result indicate that Magnetic Fe3O4 nanoparticles modified by the surfactant have good dispersity, but it’s saturation magnetization is lower than Magnetic Fe3O4 nanoparticles which notmodified by the surfactant.


2016 ◽  
Vol 70 (3) ◽  
Author(s):  
Ming-Feng Song ◽  
Zhong-Fang Li ◽  
Guo-Hong Liu ◽  
Su-Wen Wang ◽  
Xiao-Yan Yin ◽  
...  

AbstractLanthanum sulfophenyl phosphate (LaSPP) was synthesized by m-sulfophenyl phosphonic acid and lanthanum nitrate. UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy indicate that the desired product was obtained and its elementary composition and typical layered structure were determined by energy dispersive X-ray spectroscopy and scanning electron microscopy. Transmission electron microscopy (TEM) proved its typical layered structure and X-ray diffraction spectroscopy indicated its good crystallinity and the interlayer distance of about 15.67 Å , which matches the value obtained by TEM (2.0 nm). Thermogravimetry and differential thermal analysis revealed good thermal stability of LaSPP. Proton conductivity of LaSPP was measured at different temperatures and relative humidities (RH), reaching values of 0.123 S cm


2014 ◽  
Vol 798-799 ◽  
pp. 85-89 ◽  
Author(s):  
E.S.G. Junior ◽  
P.M . Jardim

Al2(WO4)3was synthesized by co-precipitation using Na2WO4and Al (NO3)3as precursors. After drying the precipitate, it was calcined at different temperatures between 500°C and 800°C. The crystallization and degradation temperatures of the samples were evaluated by means of Differential Scanning Calorimetry (DSC), Thermogravimetry (TG) and X-Ray Diffraction (XRD). It was observed that the crystallization starts at around 600°C, however Transmission Electron Microscopy (TEM) analysis showed that at this temperature the sample is partially amorphous. The degradation of the material starts at around 1200°C and at 1400°C the tungsten oxide has almost completely evaporated and the material is transformed mainly in alpha-alumina.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


1994 ◽  
Vol 9 (1) ◽  
pp. 229-235 ◽  
Author(s):  
Ch. Laurent ◽  
J.J. Demai ◽  
A. Rousset ◽  
K.R. Kannan ◽  
C.N.R. Rao

Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mössbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.


2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


2008 ◽  
Vol 1126 ◽  
Author(s):  
Aravind Suresh ◽  
Joysurya Basu ◽  
Nigel M Sammes ◽  
Barry C Carter ◽  
Benjamin A Wilhite

AbstractBaCe0.25Zr0.60Co0.15O3-x (BCZC) was synthesized via oxalate co-precipitation route. Material was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Catalytic activity of BCZC with respect to hydrogen generation via methanol partial oxidation was determined. Conductivity of the material at different temperatures and under different environments was determined by AC impedance spectroscopy. XRD and TEM results indicated that BCZC was synthesized as a homogeneous cubic phase material. Catalyst tests indicated that BCZC was catalytically active towards hydrogen generation and AC impedance results were positive enough to warrant further electrochemical studies.


2014 ◽  
Vol 1024 ◽  
pp. 7-10 ◽  
Author(s):  
Mohd Hasmizam Razali ◽  
M.N. Ahmad-Fauzi ◽  
Abdul Rahman Mohamed ◽  
Srimala Sreekantan

Morphological evolution and phase transformations of copper ion doped TiO2nanotubes after being calcined at different temperatures were studied by field emission scanning electronmicroscopy, transmission electron microscopy, and X-ray diffraction. After calcination at 300°C, the nanotubes with uniform diameter and length wereobtained. At 400°C, the nanotube structures were maintained. Nevertheless the inner tube diameter became narrower, and in same instances disappeared due to aggregation of nanotubes. The copper ion doped TiO2nanotubes then transformed to nanorodsat 500°C and the length of the nanorodsshortens after calcination at 600 °C. When the calcination temperature was further increased to 700°C, the nanorodsdisintegrate to form nanoparticles. On the other hand the phase structures of copper ion doped TiO2nanotubes calcined at 300 and 400 °C were TiO2hexagonal. After calcined at higher temperature (600 and 700°C) they transformed to anatase TiO2(tetragonal).


2004 ◽  
Vol 19 (12) ◽  
pp. 3586-3591 ◽  
Author(s):  
Jiyang Chen ◽  
Ying Shi ◽  
Jianlin Shi

Nano-sized (Y,Gd)2O3:Eu powders were synthesized by a novel co-precipitation processing in which a mixture of ammonium hydroxide and ammonium hydrogen carbonate was adopted as a complex precipitant. Evolution behaviors of precursors during calcinations were studied by means of thermogravimetry-differential scanning calorimetry-mass spectrum, Fourier transform infrared, x-ray diffraction, scanning electron microscopy, and transmission electron microscopy in detail. Nano-sized (Y,Gd)2O3:Eu powder as prepared possessed a primary grain size of about 30 nm and specific surface area of 38 m2/g after being calcined at 850 °C for 2 h, showing much finer grains and less agglomeration. The as prepared nanopowder shows intense luminescence at 611nm under x-ray or ultraviolet excitation. Transparent (Y,Gd)2O3:Eu ceramics can also be fabricated using this high sinterable nanopowder.


Sign in / Sign up

Export Citation Format

Share Document