magnetic liquids
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Александр Николаевич Болотов ◽  
Ольга Олеговна Новикова ◽  
Владимир Валентинович Мешков

Проведен анализ основных источников методических погрешностей магнитного ротационного вискозиметра, позволивший усовершенствовать конструкцию и исключить критические режимы исследований. Теоретическая оценка систематической погрешности прибора показала, что значение относительной ошибки измерений можно довести до значения менее 1%. Наибольший вклад в систематическую погрешность прибора вносит нестабильность температурного режима исследуемой наножидкости и неточность определения высоты слоя жидкости, контактирующего с измерительным цилиндром. Измерение вязкости эталонных жидкостей на магнитном вискозиметре показало, что экспериментальные значения незначительно, примерно на 0,9% завышены. Тарировка прибора на различных эталонных жидкостях позволила снизить суммарную ошибку измерений до десятых долей процента. Магнитный ротационный вискозиметр может найти применение при нестандартных научных исследованиях структуры и реологических характеристик наножидкостей, для оперативного контроля процессов синтеза магнитных жидкостей и аттестации магнитных наножидкостей, предназначенных для технического применения. An analysis is carried out of the main sources of methodological errors of the magnetic rotary viscometer. The analysis allowed to improve design and to eliminate critical modes of the research. Theoretical evaluations of the systematic error of the device showed that the value of the relative measurement error can be brought to a value of less than 1%. The greatest contribution to the systematic error of the device is made by the instability of the temperature regime of the nanofluid under study and by the inaccuracy of determining the height of the liquid layer in contact with the measuring cylinder. The measurement of the viscosity of the reference liquids on the magnetic viscometer showed that experimental values are slightly, by about 0.9% overestimated. Calibration of the device on various reference liquids allowed reducing the total measurement error down to tenths of a percent. The magnetic rotary viscometer can be used in non-standard scientific studies of the structure and rheological characteristics of nanofluids, for operational control of the processes of synthesis of magnetic liquids and certification of magnetic nanofluids intended for technical use.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1910
Author(s):  
Simona Fialová ◽  
František Pochylý

This article is focused on the derivation of constitutive equations for magnetic liquids. The results can be used for both ferromagnetic and magnetorheological fluids after the introduced simplifications. The formulation of constitutive equations is based on two approaches. The intuitive approach is based on experimental experience of non-Newtonian fluids, which exhibit a generally non-linear dependence of mechanical stress on shear rate; this is consistent with experimental experience with magnetic liquids. In these general equations, it is necessary to determine the viscosity of a liquid as a function of magnetic induction; however, these equations only apply to the symmetric stress tensor and can only be used for an incompressible fluid. As a result of this limitation, in the next part of the work, this approach is extended by the asymmetry of the stress tensor, depending on the angular velocity tensor. All constitutive equations are formulated in Cartesian coordinates in 3D space. The second approach to determining constitutive equations is more general: it takes the basis of non-equilibrium thermodynamics and is based on the physical approach, using the definition of density of the entropy production. The production of entropy is expressed by irreversible thermodynamic flows, which are caused by the effect of generalized thermodynamic forces after disturbance of the thermodynamic equilibrium. The dependence between fluxes and forces determines the constitutive equations between stress tensors, depending on the strain rate tensor and the magnetization vector, which depends on the intensity of the magnetic field. Their interdependencies are described in this article on the basis of the Curie principle and on the Onsager conditions of symmetry.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050265
Author(s):  
Rukiya Maqbool ◽  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
T. Hayat

Ferroliquids are made out of exceptionally tiny nanoscale particles (usually diameter 10 nanometers or less) of hematite, magnetite or some other compound comprising iron and a liquid. This is small enough for thermal agitation to scatter them equally inside a transporter liquid, and for them to contribute to general magnetic response of the liquid. The composition of the typical ferroliquid is about 5% magnetic solids, 10% surfactant and 85% carrier by volume. There are frequent applications of ferrofluids in mechanical and industrial engineering. Ferrofluids have innovative characteristics and their impact in magnetic fields prompts many fascinating applications. Albeit magnetic liquids are already utilized in certain devices they have not yet been abused to any level. It is trusted that this research communication may investigate the analyst to think of considering new uses for this entrancing material. Therefore, modeling is developed for the ferrofluid stagnation flow over a stretched surface with Ohmic heating and dissipation. The Tiwari–Das model is used for mathematical modeling of nanofluid. The nonlinear system of differential equations is first converted into first order and then tackled through the built-in-Shooting method. The impact of the different pertinent flow parameters is discussed on the velocity, temperature, Nusselt number and skin friction coefficient through the various plots and tables.


2020 ◽  
Vol 173 ◽  
pp. 344-355 ◽  
Author(s):  
Á. Romero-Calvo ◽  
A.J. García-Salcedo ◽  
F. Garrone ◽  
I. Rivoalen ◽  
G. Cano-Gómez ◽  
...  
Keyword(s):  

Author(s):  
Nandiguim Lamai ◽  
Alexis Mouangué Nanimina ◽  
Djimako Bongo ◽  
Bonaventure Danoumbe ◽  
Togdjim Jonas

In this study, we discussed the optical properties (Faraday rotation, transmittance and Merit factor) of two samples of magnetic liquids synthesized by co-precipitation and an additional hydrothermal synthesis of cobalt ferrite (CoFe2O4) developed according to the protocol developed by R. Massart at the PHENIX laboratory at Pierre and Marie Curie University in the form of ferrofluids. The measurements were carried out using the spectral polarimetric bench (400-1600 nm). The materials did not meet the standard and did not allow a good Faraday rotation due to their preparation conditions. Cobalt ferrite is a hard ferrimagnetic material, having many important applications in the field of magnetic storage and spintronics. The results show a very high spectral Faraday rotation in the Telecom range (1550 nm) with good transparency in the infrared of the transmittance spectra and a strong merit factor around 1550 nm, with a value of the order of 11°. For a cobalt ferrite magnetic liquid obtained hydrothermally.


2019 ◽  
Vol 10 (4) ◽  
pp. 419-431
Author(s):  
A. L. Petranovska ◽  
◽  
M. V. Abramov ◽  
N. M. Оpanashchuk ◽  
S. P. Turanska ◽  
...  
Keyword(s):  

2019 ◽  
Vol 87 (2) ◽  
Author(s):  
Álvaro Romero-Calvo ◽  
Gabriel Cano Gómez ◽  
Elena Castro-Hernández ◽  
Filippo Maggi

Abstract The sloshing of liquids in microgravity is a relevant problem of applied mechanics with important implications for spacecraft design. A magnetic settling force may be used to avoid the highly non-linear dynamics that characterize these systems. However, this approach is still largely unexplored. This paper presents a quasi-analytical low-gravity sloshing model for magnetic liquids under the action of external inhomogeneous magnetic fields. The problems of free and forced oscillations are solved for axisymmetric geometries and loads by employing a linearized formulation. The model may be of particular interest for the development of magnetic sloshing damping devices in space, whose behavior can be easily predicted and quantified with standard mechanical analogies.


Sign in / Sign up

Export Citation Format

Share Document