Magnetic Confinement of Plasmas Generated by Coaxial Twinned Electron Cyclotron Resonance (ECR) Discharge

2011 ◽  
Vol 413 ◽  
pp. 18-23
Author(s):  
Geng Shun Chen ◽  
Rui Hong Tong ◽  
An Hua Zhang

Effects of the magnetic field on confinement of the coaxial twined ECR plasmas were studied using the Lanmuir probe diagnostic technique. Under the magnetic-mirror confinement, the plasma density was quite high in the vicinity of the axis of the ECR sources but it decreased rapidly with increasing radial distance; while under the cusped field confinement, the density was lower but uniform. The trend was similar for the electron temperature and the plasma potential. This property may be utilized in materials processes to meet different requirements. Key words: Electron cyclotron resonance (ECR), Plasma, Magnetic confinement, The cusped field confinement.PACS: 52.80.Pi, 52.55.-s, 52.70.-m

1992 ◽  
Vol 258 ◽  
Author(s):  
F.S. Pool ◽  
J.M. Essick ◽  
Y.H. Shing ◽  
R.T. Mather

ABSTRACTThe magnetic field profile of an electron cyclotron resonance (ECR) microwave plasma was systematically altered to determine subsequent effects on a-Si:H film quality. Films of a-Si:H were deposited at pressures of 0.7 mTorr and 5 mTorr with a H2/SiH4 ratio of approximately three. The mobility gap density of states ND, deposition rate and light to dark conductivity were determined for the a-Si:H films. This data was correlated to the magnetic field profile of the plasma, which was characterized by Langmuir probe measurements of the ion current density. By variation of the magnetic field profile ND could be altered by more than an order of magnitude, from 1×1016 to 1×1017 at 0.7 mTorr and 1×1016 to 5×1017 at 5 mTorr. Two deposition regimes were found to occur for the conditions of this study. Highly divergent magnetic fields resulted in poor quality a-Si:H, while for magnetic field profiles defining a more highly confined plasma, the a-Si:H was of device quality and relatively independent of the magnetic field configuration.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 195-201 ◽  
Author(s):  
P. K. Shufflebotham ◽  
D. J. Thomson

This paper presents preliminary measurements of the spatial variation of the plasma density, electron temperature, plasma potential, and floating voltage within a divergent magnetic field electron cyclotron resonance (ECR) plasma processing reactor. The measurements are performed using an orbital-motion-limited cylindrical Langmuir probe designed specifically for use in these plasmas. A brief discussion of the stability and uniformity of divergent field plasmas in general, and qualitative techniques for the diagnosis of these properties, is also given. It was found that these plasmas generally occurred in distinct "modes," characterized by unique shapes and dependences on system variables, and between which discontinuous, noisy, and often bistable transitions occurred. Axially resolved probe measurements performed under ECR conditions showed that the plasma density exhibited a broadly peaked profile, while the electron temperature showed a sharp peak at ECR. The differences in these profiles leads to three qualitatively different plasma regions available for use in ECR processing. The variation of the plasma potential explains the origin of the axial ion beams that commonly occur in these systems.


2003 ◽  
Vol 42 (Part 1, No. 6A) ◽  
pp. 3656-3657 ◽  
Author(s):  
Yoshihide Higurashi ◽  
Takahide Nakagawa ◽  
Masanori Kidera ◽  
Toshimitsu Aihara ◽  
Masayuki Kase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document