Finite Element Simulation Model for High Temperature 4H-SiC Devices

2011 ◽  
Vol 413 ◽  
pp. 229-234 ◽  
Author(s):  
Hassan Habib ◽  
Nicolas G. Wright ◽  
Alton B. Horsfall

In the last decade, or so, many prototype Silicon Carbide devices and circuits have been demonstrated which have surpassed the performance of Silicon for the ability to function in extreme environments. However, the commercialisation of SiC technology now demands high performance and energy efficient miniaturised devices and circuits which can operate on the limited power resources available in harsh and hot hostile environments. This leads to refining, experimenting and perhaps re-designing devices which can rightly claim their share in the current Si dominant market. Consequently, there is a need for accurate simulation models for device engineers to understand device behaviour, examine performance trade-offs and verify the manufacturability of the design. This paper reports the first comprehensive study on the development and validation of high temperature 4H-SiC Technology Computer Aided Design (TCAD) Finite Element simulation model for low power applications. The model is based on 4H-SiC physical and material properties and is validated by high temperature 4H-SiC lateral JFET data, fabricated and characterised by our group at Newcastle University.

2021 ◽  
Author(s):  
XueTao Wei ◽  
caixue yue ◽  
DeSheng Hu ◽  
XianLi Liu ◽  
YunPeng Ding ◽  
...  

Abstract The processed surface contour shape is extracted with the finite element simulation software, and the difference value of contour shape change is used as the parameters of balancing surface roughness to construct the infinitesimal element cutting finite element model of supersonic vibration milling in cutting stability domain. The surface roughness trial scheme is designed in the central composite test design method to analyze the surface roughness test result in the response surface methodology. The surface roughness prediction model is established and optimized. Finally, the finite element simulation model and surface roughness prediction model are verified and analyzed through experiment. The research results show that, compared with the experiment results, the maximum error of finite element simulation model and surface roughness prediction model is 30.9% and12.3%, respectively. So, the model in this paper is accurate and will provide the theoretical basis for optimization study of auxiliary milling process of supersonic vibration.


2007 ◽  
Vol 353-358 ◽  
pp. 1033-1036
Author(s):  
Shu Lin Li ◽  
Man Yi Hou

The finite-element simulation models of the projectile and the discrete rod impacting to the aircraft panel structure in high velocity are established according to some experiment projects. Based on dynamic finite-element Program, the forming of impact damage in the panel structure is simulated. Through comparing the simulation results of damage pattern and size in the panel to the experiment results, the reliability of the material models and equations of state and contact algorithm used in the simulations is testified. Take the simulation of projectile vertically impacting to the panel as example, the aircraft panel structure response characteristics are analyzed briefly based on the results including the displacement of typical node in the panel, the stress course of one element and the energy change of the panel.


2012 ◽  
Vol 522 ◽  
pp. 210-216
Author(s):  
Tian Biao Yu ◽  
Xue Wei Zhang ◽  
Jia Ying Pei ◽  
Wan Shan Wang

Based on metal cutting theory and the key technology of finite element simulation, this paper uses finite element software Deform to establish three-dimensional finite element simulation model and simulate cutting process. This paper uses the work piece material is IN718 high temperature alloys packaged in Deform, and analyzes the processing characteristics of high temperature, choosing the right tools and cutting dosages to simulate. Through the simulation we can get scraps forming process, the surface stress, strain, temperature and cutting force distribution of the workpiece and the tool. We can also get the change rule of cutting force and cutting temperature under the different cutting parameters. The simulation results provide the theoretical basis for the optimization of cutting parameter selection in production practice.


2015 ◽  
Vol 727-728 ◽  
pp. 493-496
Author(s):  
Yun Feng Yao ◽  
Ying Gao ◽  
Jun Xia Li ◽  
Shuang Jie Zhang ◽  
Tao Han

A two-dimensional finite element simulation model of longitudinal welded pipe is established by the nonlinear finite element software ABAQUS. Testing enlargement mould is used for the expanding experiments for the welded pipe under the laboratory condition. The expanding force, ovality and the shape are simulated and measured. Comparing the experimental and the simulated results, the values are fitted well.


2018 ◽  
Vol 284 ◽  
pp. 146-151 ◽  
Author(s):  
I.V. Magnitsky ◽  
F.R. Odinabekov ◽  
E.S. Sergeeva

Finite-element simulation of the spatially reinforced composite material elastic properties is performed. The simulation models are built in two steps: first, a 4DL-reinforced material model simulating a perfect matrix/rod contact is built; second, an improved simulation model is developed, taking into account the possibility of separation between the composite components. Comparison is made between the results obtained numerically and those based on the existing analytical models. With these finite-element simulation models, it is possible to estimate the required composite elastic properties to be used when designing structural components based on those materials.


2011 ◽  
Vol 413 ◽  
pp. 391-398 ◽  
Author(s):  
Hassan Habib ◽  
Nicholas Wright ◽  
Alton B. Horsfall

The commercialisation of Silicon Carbide devices and circuits require high performance, miniaturised devices which are energy efficient and can function on the limited power resources available in harsh environments. The high temperature Technology Computer Aided Design (TCAD) simulation model has been used to design and optimise a potential commercial device to meet the current challenges faced by Silicon Carbide technology. In this paper we report a new methodology to optimise the design of high temperature four terminal enhancement mode n-and p-JFETs for Complementary JFET (CJFET) logic.


Sign in / Sign up

Export Citation Format

Share Document