Application of Organic Inclusion in Hydrocarbon Exploration

2012 ◽  
Vol 424-425 ◽  
pp. 545-550
Author(s):  
Hui Qing Liu ◽  
Yu Yuan Zhong

Inclusion as a research method was mainly applied in the study of mineral deposit geology in the beginning. In recent years, organic inclusion research has become one of the important means in hydrocarbon exploration. The study of the inclusion can determine the role of diagenesis and reservoir of time and temperature, infer hydrocarbon migration, tectonic movement and paleo-heat flow history, in order to better guide hydrocarbon exploration. This paper mainly discussed research method of hydrocarbon inclusions type and oil and gas inclusion, and summarizes the inclusion of the fracture structure used to study and hydrocarbon accumulation relations, determines the gas accumulation time, evaluate hydrocarbon, calculate fluid potential, predict oil and gas accumulation zones, and other aspects of the role. Inclusions found early, at first is mainly applied in the study of mineral deposit geology. Since Marray (1957) discovered larger hydrocarbon inclusions in quartz especially[1], in the 70 s, with the development of oil geochemical, the minerals fluid inclusions in the oil field geological research has been widely used. G. m. Gigashvili and v. p. Kalish in 1977 are the first to report the use of mineral inclusions as the hydrocarbons containing hydrocarbon migration of physical and chemical condition of fluid of the index. At the beginning of the 80's, the technology has already been foreign research institutions and oil company are widely used in reservoir the diagenesis of research and oil and gas exploration [2,3,4]. China has begun to set up in the 1960 s, the early main inclusions laboratory to research various metal hydrothermal ore deposits in the ore-forming temperature and the composition of the ore-forming fluid. ShiJiXi (1985,1987) will fluid inclusions method is used to study the carbonate formation of China and the thermal evolution degree, division of hydrocarbon generation evolutionary stages, according to package the body type, distribution, homogenization temperature, salinity, gas organic composition various inclusions observation and analysis data put forward the carbonate hydrocarbon source rocks and oil and gas reservoir has performance evaluation method and hydrocarbon index[2,5,6]. In petroleum exploration, through[[ First Author: Huiqing Liu (1980-), male, doctoral students, Major: mineralogy petrology mineralogy,E-mail:[email protected]]] the study of the sandstone reservoir formation of diagenetic minerals fluid inclusions, and combining with the chip observation to judge whether have oil and gas migration to reservoir, and oil and gas accumulation of time, ancient geothermal, formation water such as the salinity has a very important significance

Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


2007 ◽  
Vol 50 (S2) ◽  
pp. 27-38 ◽  
Author(s):  
ZhanLi Ren ◽  
Sheng Zhang ◽  
ShengLi Gao ◽  
JunPing Cui ◽  
YuanYuan Xiao ◽  
...  

1994 ◽  
Vol 34 (1) ◽  
pp. 189
Author(s):  
T. L. Burnett

As economics of the oil and gas industry become more restrictive, the need for new means of improving exploration risks and reducing expenses is becoming more acute. Partnerships between industry and academia are making significant improvements in four general areas: Seismic acquisition, reservoir characterisation, quantitative structural modelling, and geochemical inversion.In marine seismic acquisition the vertical cable concept utilises hydrophones suspended at fixed locations vertically within the water column by buoys. There are numerous advantages of vertical cable technology over conventional 3-D seismic acquisition. In a related methodology, 'Borehole Seismic', seismic energy is passed between wells and valuable information on reservoir geometry, porosity, lithology, and oil saturation is extracted from the P-wave and S-wave data.In association with seismic methods of determining the external geometry and the internal properties of a reservoir, 3-dimensional sedimentation-simulation models, based on physical, hydrologic, erosional and transport processes, are being utilised for stratigraphic analysis. In addition, powerful, 1-D, coupled reaction-transport models are being used to simulate diagenesis processes in reservoir rocks.At the regional scale, the bridging of quantitative structural concepts with seismic interpretation has led to breakthroughs in structural analysis, particularly in complex terrains. Such analyses are becoming more accurate and cost effective when tied to highly advanced, remote-sensing, multi-spectral data acquisition and image processing technology. Emerging technology in petroleum geochemistry, enables geoscientists to infer the character, age, maturity, identity and location of source rocks from crude oil characteristics ('Geochemical Inversion') and to better estimate hydrocarbon-supply volumetrics. This can be invaluable in understanding petroleum systems and in reducing exploration risks and associated expenses.


1995 ◽  
Vol 35 (1) ◽  
pp. 405 ◽  
Author(s):  
C.W. Luxton ◽  
S. T. Horan ◽  
D.L. Pickavance ◽  
M.S. Durham.

In the past 100 years of hydrocarbon exploration in the Otway Basin more than 170 exploration wells have been drilled. Prior to 1993, success was limited to small onshore gas fields. In early 1993, the La Bella-1 and Minerva-1 wells discovered significant volumes of gas in Late Cretaceous sandstones within permits VIC/P30 and VIC/P31 in the offshore Otway Basin. They are the largest discoveries to date in the basin and have enabled new markets to be considered for Otway Basin gas. These discoveries were the culmination of a regional evaluation of the Otway Basin by BHP Petroleum which highlighted the prospectivity of VIC/P30 and VIC/P31. Key factors in this evaluation were:geochemical studies that indicated the presence of source rocks with the potential to generate both oil and gas;the development of a new reservoir/seal model; andimproved seismic data quality through reprocessing and new acquisition.La Bella-1 tested the southern fault block of a faulted anticlinal structure in the southeast corner of VIC/P30. Gas was discovered in two Late Cretaceous sandstone intervals of the Shipwreck Group (informal BHP Petroleum nomenclature). Reservoirs are of moderate to good quality and are sealed vertically, and by cross-fault seal, by Late Cretaceous claystones of the Sherbrook Group. The gas is believed to have been sourced from coals and shales of the Early Cretaceous Eumeralla Formation and the structure appears to be filled to spill as currently mapped. RFT samples recovered dry gas with 13 moI-% CO2 and minor amounts of condensate.Minerva-1 tested the northern fault block of a faulted anticline in the northwest corner of VIC/ P31. Gas was discovered in three excellent quality reservoir horizons within the Shipwreck Group. Late Cretaceous Shipwreck Group silty claystones provide vertical and cross-fault seal. The hydrocarbon source is similar to that for the La Bella accumulation and the structure appears to be filled to spill. A production test was carried out in the lower sand unit and flowed at a rig limited rate of 28.8 MMCFGD (0.81 Mm3/D) through a one-inch choke. The gas is composed mainly of methane, with minor amounts of condensate and 1.9 mol-% C02. Minerva-2A was drilled later in 1993 as an appraisal well to test the southern fault block of the structure to prove up sufficient reserves to pursue entry into developing gas markets. It encountered a similar reservoir unit of excellent quality, with a gas-water contact common with that of the northern block of the structure.The La Bella and Minerva gas discoveries have greatly enhanced the prospectivity of the offshore portion of the Otway Basin. The extension of known hydrocarbon accumulations from the onshore Port Campbell embayment to the La Bella-1 well location, 55 km offshore, demonstrates the potential of this portion of the basin.


2000 ◽  
Vol 40 (1) ◽  
pp. 26
Author(s):  
M.R. Bendall C.F. Burrett ◽  
H.J. Askin

Sedimentary successions belonging to three petroleum su persy stems can be recognised in and below the Late Carboniferous to Late Triassic onshore Tasmania Basin. These are the Centralian, Larapintine and Gondwanan. The oldest (Centralian) is poorly known and contains possible mature source rocks in Upper Proterozoic dolomites. The Larapintine 2 system is represented by rocks of the Devonian fold and thrust belt beneath the Tasmania Basin. Potential source rocks are micrites and shales within the 1.8 km-thick tropical Ordovician Gordon Group carbonates. Conodont CAI plots show that the Gordon Group lies in the oil and gas windows over most of central Tasmania and probably under much of the Tasmania Basin. Potential reservoirs are the upper reefal parts of the Gordon Group, paleokarsted surfaces within the Gordon Group and the overlying sandstones of the Siluro-Devonian Tiger Range and Eldon Groups. Seal rocks include shales within the Siluro-Devonian and Upper Carboniferous-Permian tillites and shales.The Gondwanan supersystem is the most promising supersystem for petroleum exploration within the onshore Tasmania Basin. It is divided into two petroleum systems— the Early Permian Gondwanan 1 system, and the Late Permian to Triassic Gondwanan 2 system. Excellent source rocks occur in the marine Tasmanite Oil Shale and other sections within the Lower Permian Woody Island and Quamby Formations of the Gondwanan 1 system and within coals and freshwater oil shales of the Gondwanan 2 system. These sources are within the oil and gas windows across most of the basin and probably reached peak oil generation at about 100 Ma. An oil seep, sourced from a Tasmanites-rich, anoxic shale, is found within Jurassic dolerite 40 km WSW of Hobart. Potential Gondwanan 1 reservoirs are the glaciofluvial Faulkner Group sandstones and sandstones and limestones within the overlying parts of the glaciomarine Permian sequence. The Upper Permian Ferntree Mudstone Formation provides an effective regional seal. Potential Gondwanan 2 reservoirs are the sandstones of the Upper Permian to Norian Upper Parmeener Supergroup. Traps consisting of domes, anticlines and faults were formed probably during the Early Cretaceous. Preliminary interpretation of a short AGSO seismic profile in the Tasmania Basin shows that, contrary to earlier belief, structures can be mapped beneath extensive and thick (300 m) sills of Jurassic dolerite. In addition, the total section of Gondwana to Upper Proterozoic to Triassic sediments appears to be in excess of 8,500 m. These recent studies, analysis of the oil seep and drilling results show that the Tasmanian source rocks have generated both oil and gas. The Tasmania Basin is considered prospective for both petroleum and helium and is comparable in size and stratigraphy to other glaciomarine-terrestrial Gondwanan basins such as the South Oman and Cooper Basins.


2015 ◽  
Vol 8 (1) ◽  
pp. 172-180 ◽  
Author(s):  
Wang Kun ◽  
Hu Suyun

Carrier is an important media linking source rocks and reservoirs. In the past two decades, it is the hot topic for the hydrocarbon geology researchers. Migration pathways in carrier are main space for the hydrocarbon migration. The identification of these pathways has great meaning for the hydrocarbon exploration. In this paper, we define a pathway as a macroscopical area in any shape that relatively apparent hydrocarbon migration exists in the carrier according to some research methods. The sandstone carrier of the Neogene Shawan formation and the unconformity carrier of the Cretaceous being located in the Chepaizi uplift of the Junggar Basin (NW China) are selected as research objects. We used quantitative grain fluorescence analysis (QGF) and effective migration thickness analysis (EMT) to quantitatively study these two kinds of pathways. Migration characteristics of the hydrocarbons are analyzed in single wells and in plane. Analysis results show that evaluation and prediction results from two methods are very similar. This verifies the feasibility of those methods for pathways analysis. Based on the calibration of commercial oil flow well, distribution of migration pathways in plane is obtained, which narrow down the exploration areas. Through practical application, the application process and the considerations of the two methods are discussed and compared. For sandstone carrier, the thickness can be obtained from well logging reports and well logging diagrams. Precondition that the samples collected are located in the carrier interval in QGF analysis is needed. For unconformity carrier, identification of the unconformity surfaces is an important basic work. Increasing the sampling density can reduce the analytical errors caused by the inhomogeneous distribution of oil. EMT method is simple; however, the precondition for application is that the oil in the carrier is not too light and is well preserved in geology history.


1969 ◽  
Vol 26 ◽  
pp. 65-68
Author(s):  
Troels Laier ◽  
Hans Peter Nytoft

In 2011, traces of bitumen in the 1160 Ma old Ilímaussaq intrusion in South Greenland have been examined in order to determine their origin. The investigation was prompted by the recent interest in hydrocarbon exploration off western Greenland, an interest expressed in the form of four new licences in the region (Christiansen 2011). The hydrocarbon potential in the region was realised after reinterpretation of seismic profiles across the Labrador Sea, and this indicates the presence of a sedimentary basin off south-western Greenland (Fig. 1; Chalmers & Pulvertaft 2001). However, the main problem in petroleum exploration off south-western Greenland is that no prolific marine source rocks have been demonstrated (Christiansen 2011). Therefore, any trace of hydrocarbons, however small that may help demonstrate the occurrence of source rocks in the region, deserves careful examination.


1985 ◽  
Vol 25 (1) ◽  
pp. 235 ◽  
Author(s):  
A.F. Williams ◽  
D.J. Poynton

The South Pepper field, discovered in 1982, is located 30 km southwest of Barrow Island in the offshore portion of the Barrow Sub-basin, Western Australia. The oil and gas accumulation occurs in the uppermost sands of the Lower Cretaceous Barrow Group and the overlying low permeability Mardie Greensand Member of the Muderong Shale.The hydrocarbons are trapped in one of several fault closed anticlines which lie on a high trend that includes the North Herald, Pepper and Barrow Island structures. This trend is postulated to have formed during the late Valanginian as the result of differential compaction and drape over a buried submarine fan sequence. During the Turonian the trend acted as a locus for folding induced by right-lateral wrenching along the sub-basin edge. Concurrent normal faulting dissected the fold into a number of smaller anticlines. This essentially compressional tectonic phase contrasted with the earlier extensional regime which was associated with rift development during the Callovian. A compressional tectonic event in the Middle Miocene produced apparent reverse movement on the South Pepper Fault but only minor changes to the structural closure.Geochemical and structural evidence indicates at least two periods of hydrocarbon migration into the top Barrow Group - Mardie Greensand reservoir. The earlier occurred in the Turonian subsequent to the period of wrench tectonics and involved the migration of oil from Lower Jurassic Dingo Claystone source rocks up the South Pepper Fault. This oil was biodegraded before the second episode of migration occurred after the Middle Miocene tectonism. The later oil is believed to have been sourced by the Middle to Upper Jurassic Dingo Claystone. Biodegradation at this stage ceased or became insignificant due to temperature increase and reduction of meteoric water flow. Gas-condensate, sourced from Triassic or Lower Jurassic sediments may have migrated into the structure with this second oil although a more recent migration cannot be ruled out.The proposed structural and hydrocarbon migration history fits regional as well as local geological observations for the Barrow Sub-basin. Further data particularly from older sections of the stratigraphic column within the area are needed to refine the interpretation.


1985 ◽  
Vol 25 (1) ◽  
pp. 34 ◽  
Author(s):  
W.G. Townson

The Officer Basin described in this paper includes four Proterozoic to Lower Palaeozoic sub-basins (Gibson, Yowalga, Lennis, Waigen) which extend in a northwest to southeast belt across 200 000 sq. km of central Western Australia. These sub-basins are bounded by Archaean to Proterozoic basement blocks and are almost entirely concealed by a veneer of Permian and Cretaceous sediments. Depth to magnetic basement locally exceeds eight kilometres.Until recently, information on the sub-surface geology was limited to shallow levels, based on the results of a petroleum exploration campaign in the 1960s and the work of State and Federal Geological Surveys. In 1980, the Shell Company of Australia was awarded three permits (46 200 sq. km) covering the Yowalga and Lennis Sub-basins. The results of 4700 km of seismic data and three deep wildcat wells, combined with gravity, aeromagnetic, Landsat, outcrop and corehole information, has led to a better understanding of the regional subsurface geology.The Lennis Sub-basin appears to contain Lower to Middle Proterozoic sediments, whereas the Yowalga Sub- basin is primarily an Upper Proterozoic to Lower Cambrian sequence which comprises a basal clastic section, a middle carbonate and evaporite sequence and an upper clastic section. Widespread Middle Cambrian basalts cap the Upper Proterozoic to Lower Cambrian prospective sequence. Late Proterozoic uplift resulted in salt- assisted gravity tectonics leading to complex structural styles, especially in the basin axis.Despite oil shows, organic matter in the oil and gas generation windows and reservoir-quality sandstones with interbedded shales, no convincing source rocks or hydrocarbon accumulations have yet been located. The area remains, however, one of the least explored basins in Australia.


2013 ◽  
Vol 53 (2) ◽  
pp. 470
Author(s):  
Ray Johnson ◽  
Josh Bluett ◽  
Luke Titus ◽  
David Warner

In early 2012, Armour Energy set out to evaluate the Middle-Proterozoic formations in the Batten Trough, McArthur Basin, NT. The Batten Trough holds a massive potential shale gas play in the Barney Creek Formation, and recent gas discoveries in the overlying Lynott and Reward formations, and underlying Coxco Dolomite. The Lawn Supersequence, Isa Superbasin, Queensland, is another Middle-Proterozoic shale gas play with overlying and underlying conventional and unconventional oil and gas accumulations. Exploratory drilling between the 1980s and 1990s showed gas and oil shows across the Isa Superbasin, Queensland. Egilabria–1, ATP 1087, exhibited 390 gas units while drilling with mud, highlighting the prospectivity of this area. In both areas, the Barney Creek and Lawn Hill formations are proven source rocks and are significantly older than North American shale reservoirs. In 2012, an innovative exploration program was designed and implemented in the NT to maximise the capture of drilling data while integrating data from previous mineral and petroleum exploration programs. This resulted in gas discoveries at Cow Lagoon–1, EP 176, and in the Glyde–1 and Glyde–1 ST lateral wells in the Glyde Sub-basin in EP171. In both cases, air drilling was instrumental in aiding drilling penetration rates, gauging gas influx while drilling, and allowing geologists to rapidly obtain and assess drill cuttings. The authors first discuss the details of the formation evaluation methods used in Armour’s successful 2012 program and how these methods are extended to Armour’s 2013 program in the Isa Superbasin, northern Queensland. Next, an outline of the strategy for further delineation of the Batten Trough is provided. Finally, the authors summarise the exciting potential of the Lawn Supersequence in Queensland.


Sign in / Sign up

Export Citation Format

Share Document