Research on Flame Retarded of Polyurethane Rigid Foam/Expanded Perlite Thermal Insulation Composites

2012 ◽  
Vol 427 ◽  
pp. 133-138 ◽  
Author(s):  
Ming Xing Ai ◽  
Li Qiang Cao ◽  
Xiang Yong Guo ◽  
Xiao Long Zhao

The polyurethane rigid foam/expanded perlite thermal insulation composites (PPC) have been prepared by mixing the two-component polyurethane and expanded perlite. The effects of proportioning of constituents on the fireproofing performance of PPC were investigated according to maximum flame height using a small scale burner test. The results showed the expanded perlite has a great effect on the flame retardant properties of PPC.

2010 ◽  
Vol 96 ◽  
pp. 141-144 ◽  
Author(s):  
Ming Xing Ai ◽  
Li Qiang Cao ◽  
Xiao Long Zhao ◽  
Zhen Yu Xiang ◽  
Xiang Yong Guo

The polyurethane rigid foam/expanded perlite thermal insulation composites (PPC) have been prepared by mixing the two-component polyurethane and expanded perlite. The effects of proportioning of constituents on the mechanical and thermal properties of PPC were investigated. The results showed the compressive strength of PPC was improved and good heat-insulating was achieved, which would promote the application of polyurethane rigid foam and expanded perlite in buildings.


RSC Advances ◽  
2021 ◽  
Vol 11 (49) ◽  
pp. 30860-30872
Author(s):  
Qirui Gong ◽  
Liangyu Qin ◽  
Liangmin Yang ◽  
Keke Liang ◽  
Niangui Wang

A vegetable oil-based polyurethane rigid foam containing a phosphorus–nitrogen dualflame retardant system was prepared, and the foam exhibited not only excellent flame retardant properties but also good mechanical properties.


2014 ◽  
Vol 1030-1032 ◽  
pp. 241-245 ◽  
Author(s):  
Yan Wei Li

In this paper, the effect of C3H6N6modified by imidazolium based Ionic Liquid 1-butyl-methylimidazolium hexafluorophosphate ([BMIM]PF6) on polyurethane rigid foam flame retardant properties was conducted.The results show that the flame retardant properties of C3H6N6 modified with Ionic Liquid significantly increased and the LOI increased form 22.3 to 24.5. In the modification process, the ionic liquid mass have a very noticeable effect to the flame retardant property and when [BMIM]PF6 and C3H6N6 in quality was 4:6, Fire-retardant effect was best.Compared with the prior to the modification, C3H6N6 modified can increase effective Flame resistance of materials, horizontal burning speed from 67.6mm/min down to 33.4mm/min.Thermal degradation data show that C3H6N6 modified could improve initial decomposition temperature and reminder yield of rigid polyurethane foam,and then heat release reduced, the decomposition controlled,thermal stability increased.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Lin Liu ◽  
Rui Lv

AbstractA DOPO (9,10-dihydro-9-oxa-10-phosphaphen-anthrene-10-oxide)-based halogen-free flame retardant (ODOPM-CYC) was synthesized and incorporated in rigid polyurethane foam (RPUF). The structure of ODOPM-CYC was characterized by Fourier transform infrared spectra (FTIR), 1H NMR and 31P NMR. The effects of ODOPM-CYC on the flame resistance, mechanical performances, thermal properties and cell structure of RPUF were also investigated. The results showed that the incorporation of ODOPM-CYC strikingly enhanced flame retardant properties of RPUF. The flame retarded RPUF acquired a limiting oxygen index (LOI) value of 26% and achieved UL-94 V-0 rating with the phosphorus content of 3 wt%. The smoke production rate (SPR) also showed an obvious decrease and total smoke release (TSR) was 39.8% lower than that of neat RPUF. Besides, the results demonstrated that the incorporation of ODOPM-CYC provided RPUF better thermal stability but did not show any obvious influence on its thermal conductivity.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 344 ◽  
Author(s):  
Sebastian Rabe ◽  
Guadalupe Sanchez-Olivares ◽  
Ricardo Pérez-Chávez ◽  
Bernhard Schartel

Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties.


2011 ◽  
Vol 284-286 ◽  
pp. 1831-1835
Author(s):  
Zheng Zhou Wang ◽  
Lin Liu ◽  
Gan Xin Jie ◽  
Ping Kai Jiang

Flame retarded ethylene-vinyl acetate copolymer (EVA) was prepared in a melt process containing melamine phosphate (MP), or MP in combination with dipentaerythritol (DPER) as flame retardants. The influence of MP and MP/DPER on flame retardant properties of EVA was investigated by limiting oxygen index (LOI) and UL 94 test. Thermal decomposition of the flame retardants and flame retarded EVA composites was studied by the thermogravimetric analysis. The results show that MP used alone in EVA does not exerts good flame retardancy, even at a loading of 50wt%. It is found that the flame retardant properties of the EVA/MP/DPER composites is greatly improved when a suitable amount of MP substituted by DPER. Moreover, mechanical properties of the EVA composites were studied.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 148 ◽  
Author(s):  
Jian Liu ◽  
Liuliu Wang ◽  
Wei Zhang ◽  
Yanming Han

Phenolic foam composites (PFs) are of substantial interest due to their uniform closed-cell structure, low thermal conductivity, and good thermal insulation performance. However, their disadvantages of a high pulverization rate and poor mechanical properties restrict their application in building exterior insulation. Therefore, the toughening of these composites is necessary. In this paper, poplar fiber was treated with an acetylation reagent, and the acetylated fiber was used to prepare modified phenolic foams (FTPFs); this successfully solved the phenomenon of the destruction of the foam structure due to the agglomeration of poplar fiber in the resin substrate. The foam composites were comprehensively evaluated via the characterization of their chemical structures, surface morphologies, mechanical properties, thermal conductivities, and flame retardant properties. It was found that the compressive strength and compressive modulus of FTPF-5% respectively increased by 28.5% and 37.9% as compared with those of PF. The pulverization ratio was reduced by 32.3%, and the thermal insulation performance and flame retardant performance (LOI) were improved. Compared with other toughening methods for phenolic foam composites, the phenolic foam composites modified with surface-compatibilized poplar fiber offer a novel strategy for the value-added utilization of woody fiber, and improve the toughness and industrial viability of phenolic foam.


Sign in / Sign up

Export Citation Format

Share Document