Effect of Fe Doping on the Morphology of Hydrothermally Derived BaTiO3 Crystals

2012 ◽  
Vol 430-432 ◽  
pp. 12-15
Author(s):  
Lin Lin Yang ◽  
Yu Jiang Wang ◽  
Shun Li Huang ◽  
Yong Gang Wang

Pure phase Fe doped BaTiO3 crystals have been successfully fabricated at 200°C with 0.7M KOH by a hydrothermal method. The obtained products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). An obvious morphology evolution from hexagonal shape to sphericity was observed when Fe doping concentration was increased from 0% to 1%, 3%, 6%, and 10%. In addition, the size of the obtained Fe doped BaTiO3 crystals obviously became smaller. The possible mechanism was also discussed.

2013 ◽  
Vol 745-746 ◽  
pp. 309-314 ◽  
Author(s):  
Si Min Yin ◽  
Gang Xu ◽  
Zhao Hui Ren ◽  
Chun Ying Chao ◽  
Ge Shen ◽  
...  

Perovskite lead titanate crystals with various morphologies were successfully synthesized via a hydrothermal reaction route with different lead sources. X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were employed to characterize the phase composition and the morphology of the synthesized products. In order to investigate the effect of the lead source on the phase formation and morphology evolution of the synthesized pervoskite PbTiO3 crystals, PbO, PbF2, PbSO4 and Pb (CH3COO)3 ·3H2O, were used as starting precursor lead source introduced into the hydrothermal reaction system, respectively. Accordingly, perovskite PbTiO3 brken cubes, irregular particles, cubic particles, and microplates were obtained, respectively. Based on the experimental results, the effect of lead source was simply discussed.


2011 ◽  
Vol 311-313 ◽  
pp. 545-548 ◽  
Author(s):  
Yu Jiang Wang ◽  
Yong Gang Wang

NiWO4 nanoparticles were successfully synthesized by a molten salt method at 270°C. The as-prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and exhibited a pure phase NiWO4 with about 50 nm in particle size and uniform nearly-spherical particle shape.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 899
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Damian C. Onwudiwe

Pure-phase Cu2−xS (x = 1, 0.2) nanoparticles have been synthesized by the thermal decomposition of copper(II) dithiocarbamate as a single-source precursor in oleylamine as a capping agent. The compositions of the Cu2−xS nanocrystals varied from CuS (covellite) through the mixture of phases (CuS and Cu7.2S4) to Cu9S5 (digenite) by simply varying the temperature of synthesis. The crystallinity and morphology of the copper sulfides were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed pure phases at low (120 °C) and high (220 °C) temperatures and a mixture of phases at intermediate temperatures (150 and 180 °C). Covellite was of a spherical morphology, while digenite was rod shaped. The optical properties of these nanocrystals were characterized by UV−vis–NIR and photoluminescence spectroscopies. Both samples had very similar absorption spectra but distinguishable fluorescence properties and exhibited a blue shift in their band gap energies compared to bulk Cu2−xS. The pure phases were used as catalysts for the photocatalytic degradation of tetracycline (TC) under visible-light irradiation. The results demonstrated that the photocatalytic activity of the digenite phase exhibited higher catalytic degradation of 98.5% compared to the covellite phase, which showed 88% degradation within the 120 min reaction time using 80 mg of the catalysts. The higher degradation efficiency achieved with the digenite phase was attributed to its higher absorption of the visible light compared to covellite.


Author(s):  
Eric O'Quinn ◽  
Cameron Tracy ◽  
William F. Cureton ◽  
Ritesh Sachan ◽  
Joerg C. Neuefeind ◽  
...  

Er2Sn2O7 pyrochlore was irradiated with swift heavy Au ions (2.2 GeV), and the induced structural modifications were systematically examined using complementary characterization techniques including transmission electron microscopy (TEM), X-ray diffraction...


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


Sign in / Sign up

Export Citation Format

Share Document