Product Design of a Precision Recycle-Process Tool for Displays' Color Filters of TFT-LCDs

2008 ◽  
Vol 44-46 ◽  
pp. 449-454
Author(s):  
Pai Shan Pa

An effective process was developed using electroremoval as a precision removal-process for indium tin oxide (ITO) thin-film nanostructures from the displays’ color filter surface of thin film transistor liquid crystal displays (TFT-LCDs). The low yield of ITO thin-film deposition is an important factor in semiconductor production. By establishing a recycling process using the ultra-precise removal of thin-film nanostructures, the semiconductor optoelectronic industry can effectively recycle defective products, minimizing both production costs and pollution. For the removal-process, high rotational speed of the electrode (negative-pole) elevates the discharge mobility and results in improved removal. High flow velocity of the electrolyte provides larger discharge mobility and greater removal ability. An adequate gap-width between the negative-electrode and the ITO surface, or a higher working temperature, results in a higher removal rate for ITO thin-films. Also, adequate feed rate of the color filter combined with enough electrical power produces a fast removal rate. Pulsed direct current can improve the effect of dregs discharge and is advantageous to associate with the fast feed rate of the workpiece (displays’ color filter), but it raises the current rating. Electrochemical removal requires only a short period of time to remove the ITO thin-film easily and cleanly.

2010 ◽  
Vol 428-429 ◽  
pp. 387-390
Author(s):  
Pai Shan Pa

A new effective fabrication module was developed to mediate the problem of the low yield of Indium-tin-oxide (ITO) nanostructures deposition uses micro electroremoval technology and a design of twins-cylinder tool as a precision etching process to remove the defective Indium-tin-oxide (ITO) from the optical PET diaphragm surfaces of digital-paper displays. For the removal-process, a small gap width between the negative electrode and the workpiece (optical PET diaphragm) surface corresponds to a higher removal rate for the ITO. A small diameter of the anode or a small diameter of the cathode of the twins-cylinder tool provides large electric current density and takes less time for the same amount (20 nm) of ITO removal. High rotational speed of the twins-cylinder tool the discharge mobility and results in improving the removal effect. Providing enough electrical power can uses fast feed rate of the optical PET diaphragm combined with a fast removal rate for ITO. With increasing in current rating, pulsed direct current can improve the effect of dregs discharge and is advantageous to associate with the fast feed rate of the optical PET diaphragm. By establishing a recycling process using the ultra-precise removal of thin-film nanostructures, through the micro electroremoval and the twins-cylinder electrodes requires only a short period of time to remove the ITO thin-film easily and cleanly. The optoelectronic semiconductor industry can effectively recycle defective products, minimizing both production costs and pollution.


2009 ◽  
Vol 83-86 ◽  
pp. 622-629 ◽  
Author(s):  
Pai Shan Pa

Although the low yield rate of ITO thin-film during the production of semiconductor techniques is easily seen. Current work presents a new modus of electrochemical machining using a design rolling tool as electrodes constructs a precision recycle process offering faster performance in removing the color filter surface’s ITO thin-film. Through establishing an ultra-precise recycling process to remove the thin-film microstructure, this helps the semiconductor optoelectronic industry to reduce both production costs and pollution. The design features of the removal processes for a thin-film and the tool design of rolling electrodes are of major interest. Higher electrical current is not required when an effective feeding electrodes is used to reduce the response area. In the current experiment, the author utilizes a 5th Generation TFT-LCD. The design electrodes (rolling tool) are used with continuous and pulsed direct current in the electrochemical machining experiment. A displays’ color filter with a fast feed rate is combined with enough electric power to provide highly effective removal. High rotational speed of the rolling tool and high flow velocity of the electrolyte elevates the discharge mobility and improves the removal effect. A larger diameter of the fictitious rotation circle of the cathode and a small end radius of the cathode provide better removal effect. A precision recycling process is presented using an effective rolling tool in the electrochemical machining. It only needs a short period of time to remove the ITO thin-film easily and cleanly.


2009 ◽  
Vol 626-627 ◽  
pp. 1-4
Author(s):  
Pai Shan Pa

In the current study, a reclamation module uses micro electroetching as a precision fabrication with a new design of T-form tool to remove the defective Indium-tin-oxide (TCO) nanostructure from the optical PET surfaces of digital paper display is presented in current studies. The adopted precision reclamation process requires only a short period of time to remove the TCO nanostructure easily and cleanly is based on technical and economical considerations and is highly efficient. A large rotational diameter of the cathode accompanied by a small gap width between the cathode and the workpiece corresponds to a higher removal rate for the TCO nanostructure. A small thickness of the electrodes, or a small edge radius of the electrodes takes less time for the same amount of TCO removal. A higher feed rate of the optical PET diaphragm combines with enough electric power to drive fast etching rate. High rotational speed of the T-form tool can improve the effect of dregs discharge and is advantageous to associate with the fast feed rate of the workpiece (optical PET diaphragm).


2013 ◽  
Vol 668 ◽  
pp. 288-291
Author(s):  
P.S. Pa

A newly designed arc-form shaped tool was used to carry out precise micro electrochemical etching (MECE) to remove Indium-tin-oxide (In2O3SnO2) thin-film nanostructures from the optical PET diaphragm surfaces for digital-paper surface. For this precise removal process, a higher current with a faster feed rate of the optical PET diaphragm effectively achieved rapid material removal. A pulsed direct current can improve dregs discharge and is advantageous when associated with fast PET feed rates, but this raises the total current required. A higher temperature or flow velocity of the electrolyte corresponds to a higher removal rate of the In2O3SnO2 nanostructures. A high rotational speed of the arc-form shaped tool corresponds to a higher removal rate of In2O3SnO2. A large cathode, along with a small gap-width between the cathode and the PET diaphragm, increases In2O3SnO2 removal rates. A thin cathode, or a short arc length of the arc-form anode, reduces the time taken for In2O3SnO2 removal.


2010 ◽  
Vol 297-301 ◽  
pp. 203-208
Author(s):  
Pai Shan Pa

A new triangular-shape designed tool as a cathode in microelectromechanical etching process is a precision nanoscale production of a reclamation system of Indium tin oxide (ITO) thin-films defects removal from optoelectronic flat panel displays’ color filter surface is demonstrated in the current study. Through the ultra-precise removal of the thin-film nanostructure, the optoelectronic semiconductor industry can effectively reclaim defective products, reducing production costs. In the current experiment, a large size triangular shape cathode is accompanied by a small gap-width between the cathode and the workpiece takes less time for the same amount of ITO removal. A higher feed rate of displays’ color filter or a small end radius of the cathode combined with enough electric power produces fast machining. Pulsed direct current can improve the effect of dregs discharge and is advantageous in association with a fast workpiece feed rate. However, it raises the current rating. A large flow rate of the electrolyte corresponds to a higher removal rate for the ITO nanostructure. The electrochemical etching just needs a short time to make the ITO remove removal easy and clean.


2010 ◽  
Vol 426-427 ◽  
pp. 9-12
Author(s):  
Pai Shan Pa

The low yield rate of the transparent conducting oxide (TCO) is easily existent through the processes of semiconductor production. A nanotechnology system of the recycling process for removing the TCO-layer from displays’ color filter surface of computer display is presented. By establishing a recycling process for the ultra-precise removal of the thin film nanostructure, the semiconductor optoelectronic industry can effectively reclaim defective products, reducing both production costs and pollution for the technical application. In the current experiment, the major interest is the design mechanism features of the removal process for a thin layer of TCO and an effective design dumbbell-tool. For the recycling processes, a small diameter of the positive-electrode, a small gap-width between the negative-electrode and the positive-electrode corresponds to a higher removal rate for the TCO-layer. A high rotational speed of the dumbbell-tool, or a high flow velocity of the electrolyte increases the dreg discharge mobility and improves the removal effect. A higher working temperature or a higher concentration of the electrolyte corresponds to a higher removal rate for the TCO-layer. An enough electric power corresponds with a higher feed rate of the displays’ color filter produces a fast removal rate and reduces the production costs. An effective design of the system mechanism and the machining tool in the electroremoval processes requires quite a short time to make the TCO-layer remove easily and cleanly.


2011 ◽  
Vol 181-182 ◽  
pp. 955-958
Author(s):  
Pai Shan Pa

A effective method for the precision electrochemical removal of thin film nanostructures from LCD panels using a gear-shaped electrode tool has been developed. This ultra-precise process effectively removes defective Indium-Tin-Oxide layers allowing LCD panels to be returned to the production line and significantly reduces costs. In the current experiment a 7th Generation TFT-LCD panel was used. A high rotational speed of the gear-shaped negative electrode elevates discharge mobility and improves the removal effect. Pulsed direct current can improve the effect of dregs discharge and is advantageous when combined with a fast workpiece feed rate. A fast feed combined with a high current flow results in very effective removal of the color filter layer. A negative electrode of large diameter with a small edge radius provides higher current density and also improves the removal affect. This novel design using electrochemical removal as a precision recycling process for removing ITO layers from LCD panels is clean, effective and very fast.


2010 ◽  
Vol 118-120 ◽  
pp. 665-669
Author(s):  
Pai Shan Pa

A system design for a recycling process for the nano removal of the indium tin oxide (ITO) nanostructure from the color filter surface of TFT-LCD displays is presented. The low yield rate of ITO thin-films is well known in semiconductor production processes. By establishing a recycling process for the ultra-precise removal of the thin-film nanostructure, the optoelectronic semiconductor industry can effectively recycle defective products with a reduction of both production costs and pollution. In the current experiment, the major interest lies in the features of the technology and the design of an oblique cathode for the electrochemical removal process. For this process a steep gradient of the oblique cathode provides large discharge mobility and a better removal effect. A thin oblique cathode, a small gap-width between the cathode and the ITO surface, or a high flow rate of electrolyte corresponds to a higher removal rate of the ITO-layer. A large current flow combined with a high feed rate of the display also results in a fast removal rate.


2009 ◽  
Vol 620-622 ◽  
pp. 607-610
Author(s):  
Pai Shan Pa

The low yield of ITO thin film deposition is an important factor in optoelectronic semiconductor production. A recycle fabrication module uses micro electroremoving as a precision machining process with a new design of inner wedge-form tool to remove the defective Indium-tin-oxide (ITO) nanostructure from the optical PET surfaces of digital paper display is presented in current studies. The adopted precision recycle process requires only a short period of time to remove the ITO nanostructure easily and cleanly is based on technical and economical considerations and is highly efficient. In the current experiment, a higher feed rate of the optical PET diaphragm combines with enough electric power to drive fast micro electroremoving. A large slant angle of the cathode and a small arc rounding radius of the anode takes less time for the same amount of ITO removal. High rotational speed of the electrodes can improve the effect of dregs discharge and is advantageous to associate with the fast feed rate of the workpiece (optical PET diaphragm). A small rotational diameter of the anode accompanied by a small width of the cathode corresponds to a higher removal rate for the ITO nanostructure.


2012 ◽  
Vol 426 ◽  
pp. 3-6
Author(s):  
P.S. Pa

A bluge rotational tool has been developed as an effective precision electrochemical removal for the thin film nanostructures from LCD panels. This ultra-precise process effectively removes defective Indium-Tin-Oxide layers allowing LCD panels to be returned to the production line and significantly reduces costs. In the current experiment a 7th Generation TFT-LCD panel was used. A high rotational speed of the cheek rotational tool elevates discharge mobility and improves the removal effect. A negative electrode of large diameter with a small end radius provides higher current density and also improves the removal affect. Pulsed direct current can improve the effect of dregs discharge and is advantageous when combined with a higher electric power. A fast feed combined with a high current flow results in very effective removal of the color filter layer. This novel design using electrochemical removal as a precision recycling process for removing ITO layers from LCD panels is clean, effective and very fast.


Sign in / Sign up

Export Citation Format

Share Document