Investigation of the Dynamic Behaviors of Cranes under Seismic Effects with Theoretical and Experimental Study

2012 ◽  
Vol 445 ◽  
pp. 1082-1087 ◽  
Author(s):  
Ahmet Sagirli ◽  
C. Oktay Azeloglu

This paper is concerned with investigation of the dynamic behaviors of cranes under seismic effects. For this purpose, firstly we have performed experiment on a 1/20 scale crane model on the shake table with real earthquake data, then a multi degree-of-freedom non-linear mathematical model is developed including behavior of the container cranes under earthquakes and simulated. The simulation system has a five degrees-of-freedom and modeled system was simulated for the ground motion of the El Centro earthquake in USA, 1940. Finally, the time history of the crane bridge displacement and acceleration responses of the both theoretical and experimental cases are presented. Theoretical and experimental results exhibit that the mathematical model is accurate. This study also shows the destructive effects of high accelerations which occur during the earthquake. These effects cannot be omitted in the design of cranes. The result of this study which is an accurate mathematical model can be inspiring for the engineers in terms of design parameters.

1993 ◽  
Vol 115 (1) ◽  
pp. 103-109 ◽  
Author(s):  
R. Agrawal ◽  
G. L. Kinzel ◽  
R. Srinivasan ◽  
K. Ishii

In many mechanical systems, the mathematical model can be characterized by m nonlinear equations in n unknowns. The m equations could be either equality constraints or active inequality constraints in a constrained optimization framework. In either case, the mathematical model consists of (n-m) degrees of freedom, and (n-m) unknowns must be specified before the system can be analyzed. In the past, designers have often fixed the set of (n-m) specification variables and computed the remaining n variables using the n equations. This paper presents constraint management algorithms that give the designer complete freedom in the choice of design specifications. An occurrence matrix is used to store relationships among design parameters and constraints, to identify dependencies among the variables, and to help prevent redundant specification. The interactive design of a torsion bar spring is used to illustrate constraint management concepts.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shengke Ni ◽  
Zhengjiang Liu ◽  
Yao Cai ◽  
Teng Zhang

To improve the behavioral realism of maritime simulator, the mathematical model of ship heave and pitch motion in regular waves is proposed. To avoid the influence of irregular frequency by two-dimensional Frank source and sink distribution method, the multiparameter conformal mapping method was adopted to solve the hydrodynamic problem of ship’s transverse sections, and then the integration of the hydrodynamic coefficients and the wave exciting forces for the whole ship hull was obtained using the Salvesen–Tuck–Faltinsen (STF) strip method. The Abkowitz model was used for the horizontal maneuverability motion equations, and the ship heave and pitch motion mathematical model in regular waves can be built considering the maneuvering factors. To verify the credibility and applicability of the improved model, the Mariner vessel with a Froude number of 0.2 was taken as the simulation case; when Mariner vessel sails in head waves, the maximum relative error between the calculated results and the experimental results is 23.6% for amplitude response operators of ship heave and pitch motion, and the calculated results and the experimental results have the same trend. When turning maneuvers in regular waves are carried out, the time history of ship pitch and pitch motions in regular waves does not show the sinusoidal periodic change any more, but the time history of heave and pitch motion still possesses periodic change to some extent, at which the period is about the time required for the turning motion to finish a circle. When turning maneuvers are carried out for 3000 seconds, the time required for computer operation is about 487.6 s, and the real-time requirements of maritime simulator are satisfied. Thus, the mathematical model of ship heave and pitch motion established in this paper can be effectively applied to the maritime simulator.


Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrei Vasilevich Malchikov

This chapter describes various designs of multilink mobile robots intended to move inside the confined space of pipelines. The mathematical model that describes robot dynamics and controlled motion, which allows simulating different regimes of robot motion and determining design parameters of the device and its control system, is presented. The chapter contains the results of numerical simulations for different types of worm-like mobile robots. The experimental studies of the in-pipe robots prototypes and their analyses are presented in this chapter.


2007 ◽  
Vol 22 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Michelle J. Clarke ◽  
Fredric B. Meyer

✓The mathematical modeling of hydrocephalus is a relatively young field. The discipline evolved from Hakim's initial description of the brain as a water-filled sponge. Nagashima and colleagues subsequently translated this description into a computer-driven model by defining five important system rules. A number of researchers have since criticized and refined the method, providing additional system constraints or alternative approaches. Such efforts have led to an increased understanding of ventricular shape change and the development of periventricular lucency on imaging studies. However, severe limitations exist, precluding the use of the mathematical model to influence the operative decisions of practicing surgeons. In this paper, the authors explore the history, limitations, and future of the mathematical model of hydrocephalus.


2014 ◽  
Vol 21 (2) ◽  
pp. 3-8
Author(s):  
Jan P. Michalski

Abstract The paper presents a method of choosing the optimal value of the cargo ships deadweight. The method may be useful at the stage of establishing the main owners requirements concerning the ship design parameters as well as for choosing a proper ship for a given transportation task. The deadweight is determined on the basis of a selected economic measure of the transport effectiveness of ship - the Required Freight Rate (RFR). The mathematical model of the problem is of a deterministic character and the simplifying assumptions are justified for ships operating in the liner trade. The assumptions are so selected that solution of the problem is obtained in analytical closed form. The presented method can be useful for application in the pre-investment ships designing parameters simulation or transportation task studies.


2022 ◽  
Vol 7 ◽  
pp. 1
Author(s):  
Andrés Vilaboa Díaz ◽  
Pastora M. Bello Bugallo

Buildings are one of the systems that more energy consumed in the European Union. The study of the thermal envelope is interesting in order to reduce the energy losses. For that, a mathematical model able to predict the system response to external temperature variations is developed. With the mathematical model, different thermal envelope elements of a building based on the lag and the cushioning of the resultant wave can be characterized. In addition, it is important to analyse where the insulation is placed, because when the insulation is outside and the thermal mass is inside, the system produces a response with smooth temperature variations than when the insulation is inside. Therefore, placing the outside insulation generates more steady indoor temperatures, increasing the thermal comfort inside the building. To complete the mathematical model that allows predicting the temperature inside a building taking into account the solar inputs and the thermal inertia of the building. This study will help to establish the optimum design parameters in order to build sustainable and comfortable buildings. Furthermore, it will take one step forward in the construction of nearly Zero-Energy Buildings.


2020 ◽  
Author(s):  
Olga Dornyak ◽  
Ivan Bartenev ◽  
Mikhail Drapalyuk ◽  
Dmitry Stupnikov ◽  
Sergey Malyukov ◽  
...  

The design of a forest fire soil-thrower made to prevent and eliminate ground forest fires is presented. A mathematical model of machine movement has been developed, which enables to study the laws of the interaction process of the design with the soil. It is accepted that the machine has two degrees of freedom. The mathematical model has been obtained using the Lagrange equations of the second kind. The design and technological parameters of the forest fire soil-throwing machine, affecting the efficiency of its work, including mass and width of the grip of the ripper casing, mass, radius and frequency of rotation of the milling tool, the number and geometric parameters of the blades are taken into account. Mathematical model enables to determine the effect of these parameters on the characteristics of the movement of ripper casing and milling working body. A mathematical model is needed to synchronize the translational motion of the unit and the rotational motion of the rotor. Formulas have been obtained for the steady motion of the forest fire soil-thrower, that determine the hauling power of tractor and torque that ensures the operation of milling tools.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jorge de-J. Lozoya-Santos ◽  
Juan C. Tudon-Martinez ◽  
Ruben Morales-Menendez ◽  
Olivier Sename ◽  
Andrea Spaggiari ◽  
...  

A methodology is proposed for designing a mathematical model for shock absorbers; the proposal is guided by characteristic diagrams of the shock absorbers. These characteristic diagrams (Force-Displacement, Velocity-Acceleration) are easily constructed from experimental data generated by standard tests. By analyzing the diagrams at different frequencies of interest, they can be classified into one of seven patterns, to guide the design of a model. Finally, the identification of the mathematical model can be obtained using conventional algorithms. This methodology has generated highly non-linear models for 2 degrees of freedom magneto-rheological dampers with high precision (2–10% errors).


2021 ◽  
Vol 5 (4) ◽  
pp. 135-139
Author(s):  
Alexander Serhieiev ◽  
Andriy Krivoshapka ◽  
Oleksandr Isakov ◽  
Vyacheslav Lysenko ◽  
Viktor Moskalenko ◽  
...  

The subject matter of the article is the towing and pulling of wheeled and tracked vehicles with the use of cable ropes and dynamic slings. The goal of the study is to determine the mathematical and physical basis for the development of a simulator for towing and pulling wheeled and tracked vehicles for researching to study the possibility of using aramid fibers of cable-ropes and dynamic slings. The tasks to be solved are: based on the analysis of the main roads and ground characteristics to formalize the list of calculated parameters and physical quantities determine the amount of evacuation work when pulling, towing and transporting wheeled and tracked vehicles; to develop a mathematical model that describes the process of pulling and towing wheeled and tracked vehicles using cable ropes and dynamic slings. General scientific and special methods of scientific knowledge are used. The following results are obtained. By analyzing the main characteristics of roads and ground, a formalized list of design parameters and physical quantities that determine the volume of evacuation work during the towing and pulling of wheeled and tracked vehicles was obtained. Mathematical model, describes the process of pulling and towing wheeled and tracked machines using cable ropes and dynamic slings have been  compiled as a system of equations with different order. analyzed existing technology for the production of aramid fibers, their strengths and weaknesses, and formed a research polygon with regard to the peculiarities of the operation of wheeled and tracked vehicles. Existing technology for the production of aramid fibers, their strengths and weaknesses, and formed a research polygon with regard to the peculiarities of the operation of wheeled and tracked vehicles have been analyzed. Conclusions. The main roads and ground characteristics  that determine the vehicles. evacuation conditions are the following: the type of road or ground, their possibility depending on the season and precipitation, the presence of ascents and descents, as well as the nature of road (ground) interaction with caterpillars determined by resistance coefficients. movement and traction. The mathematical model of pulling a wheeled and tracked vehicle using cable ropes and dynamic can be presented as a system of equations: the jerk carried out by the machine in time reflected third-order differential equation, assuming that all the energy accumulated by the cable is numerically equal to the work of moving stuck machine, corresponds to the equality of the corresponding integrals; the properties of aramid fibers that affect the strength and performance characteristics of cable ropes can be formally expressed through the elongation of the cable. Analysis of strength and service properties of aramid fibers opens the way to improvement of manufacturing technology of cable ropes and dynamic slings for pulling and towing of wheeled and tracked vehicles.


Sign in / Sign up

Export Citation Format

Share Document