Finite Element Analysis of Composite Volleyball Upright Structures

2012 ◽  
Vol 446-449 ◽  
pp. 247-250
Author(s):  
Lu Yang Shan ◽  
Yi Shan

A composite FRP volleyball upright structure is analyzed by finite element (FE) method. A static analysis is performed using commercial finite element software ANSYS. Deformation and stress distributions under regular and upper bound force (i.e., to include dynamic/impact effect) are provided. An elastic eigenvalue analysis is carried out as well to predict the buckling load and modes.

2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2013 ◽  
Vol 483 ◽  
pp. 297-300
Author(s):  
Jia Qi Jin ◽  
Ye Yuan ◽  
Xian Rong Wang

Based on the finite element analysis of the slip coat in the compulsory lifting system of hyper-thermal snubbing operation injected by steam, the static analysis with regard to the slip coat is undoubtedly employed taking advantage of the finite element software. And then, the failure forms are deduced and the maximum allowable stress is calculated by analyzing the stress distribution.


2013 ◽  
Vol 442 ◽  
pp. 507-510 ◽  
Author(s):  
Bo Wang ◽  
Yong Zhang ◽  
Rong Jun Chen

Based on the normal work and study practice, the author sums up some experience that need to pay attention to some problems in the Ansys finite element analysis. In structural static analysis, the principle of the stress singularity and different load are needed to apply. And in analyzing the nonlinear structure, the problems of convergence are needed to pay special attention.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


2012 ◽  
Vol 184-185 ◽  
pp. 218-221
Author(s):  
Si Cong Yuan ◽  
Jing Qiang Shang ◽  
Dong Hong Wang ◽  
Dong Dong Wei ◽  
Chang Xiao

For the high hoisting height, wide using range, tower crane is widely utilized in the architecture construction, while there are some deficiencies in the high rising architecture such as chimney, so the performance can’t exerted. By virtue of computer aided technology, the finite element static analysis of metallic structure of unconventional dedicated tower crane is conducted in this paper, and the figures of stress and displacement are achieved for the two working conditions and two structures. It is proved that the results are satisfied the requirements of stiffness and strength, and also foundation is established for the further analysis.


Sign in / Sign up

Export Citation Format

Share Document