Study on the X-Ray Radiation Pre-Sorting of Liaoning Chaoyang Low Grade Molybdenum Ore

2012 ◽  
Vol 454 ◽  
pp. 333-336
Author(s):  
Wan Zhong Yin ◽  
Ming Bao Liu ◽  
Qiang Li ◽  
Li Yi Duan ◽  
Ying Qiang Ma ◽  
...  

The test of low grade Mo ore preconcentration index according to different separation threshold value was studied in this article. The results indicated that preconcentration index varies with the block of feeded material. Under the same test conditions ,the beneficiation index of -100+60mm size class particle was better than the other grain-sized particles and too large or too small particles all can affect the preconcentration index adversely.

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Aydar NIGMATULIN ◽  
Zaure ABDRAKHMANOVA ◽  
Andrey KAN ◽  
Sergey EFIMENKO ◽  
Dmitry MAKAROV

This paper examines the process and methodological aspects of implementing online X-ray fluorescence monitoring of ore in terms ofits silver, cadmium, zinc, lead, molybdenum, and iron grade at the process conveyors at Balkhash and Karagaily Concentrators andthe main conveyor of the Nurkazgan underground mine operated by Kazakhmys Corporation LLC. The research was complicated bythe need to: a) ensure reliable measurement of silver and cadmium in the range of 1+ ppm, molybdenum in the range of 10+ ppm, aswell as copper, zinc, lead, and iron in the ore size class –300 mm; b) implement monitoring of the grade of these elements (except molybdenum) at Balkhash Concentrator in the waste slag of Balkhash Copper Smelter, characterized by a very complex elemental matrix.A modification of the ore monitoring station RLP-21T (by Aspap Geo LLC, Alma-Ata) was developed, implemented, and thoroughlytested for online monitoring of low-grade silver ore flows. Energy dispersive X-ray fluorescence method was adopted for ore assays.Instrument spectra were measured every second. Silver, cadmium, and molybdenum grade was calculated based on 40 measurements,copper, zinc, lead, and iron grade – based on 20 measurements.


2021 ◽  
Vol 15 (1) ◽  
pp. 235-248
Author(s):  
Mayank R. Kapadia ◽  
Chirag N. Paunwala

Introduction: Content Based Image Retrieval (CBIR) system is an innovative technology to retrieve images from various media types. One of the CBIR applications is Content Based Medical Image Retrieval (CBMIR). The image retrieval system retrieves the most similar images from the historical cases, and such systems can only support the physician's decision to diagnose a disease. To extract the useful features from the query image for linking similar types of images is the major challenge in the CBIR domain. The Convolution Neural Network (CNN) can overcome the drawbacks of traditional algorithms, dependent on the low-level feature extraction technique. Objective: The objective of the study is to develop a CNN model with a minimum number of convolution layers and to get the maximum possible accuracy for the CBMIR system. The minimum number of convolution layers reduces the number of mathematical operations and the time for the model's training. It also reduces the number of training parameters, like weights and bias. Thus, it reduces the memory requirement for the model storage. This work mainly focused on developing an optimized CNN model for the CBMIR system. Such systems can only support the physicians' decision to diagnose a disease from the images and retrieve the relevant cases to help the doctor decide the precise treatment. Methods: The deep learning-based model is proposed in this paper. The experiment is done with several convolution layers and various optimizers to get the maximum accuracy with a minimum number of convolution layers. Thus, the ten-layer CNN model is developed from scratch and used to derive the training and testing images' features and classify the test image. Once the image class is identified, the most relevant images are determined based on the Euclidean distance between the query features and database features of the identified class. Based on this distance, the most relevant images are displayed from the respective class of images. The general dataset CIFAR10, which has 60,000 images of 10 different classes, and the medical dataset IRMA, which has 2508 images of 9 various classes, have been used to analyze the proposed method. The proposed model is also applied for the medical x-ray image dataset of chest disease and compared with the other pre-trained models. Results: The accuracy and the average precision rate are the measurement parameters utilized to compare the proposed model with different machine learning techniques. The accuracy of the proposed model for the CIFAR10 dataset is 93.9%, which is better than the state-of-the-art methods. After the success for the general dataset, the model is also tested for the medical dataset. For the x-ray images of the IRMA dataset, it is 86.53%, which is better than the different pre-trained model results. The model is also tested for the other x-ray dataset, which is utilized to identify chest-related disease. The average precision rate for such a dataset is 97.25%. Also, the proposed model fulfills the major challenge of the semantic gap. The semantic gap of the proposed model for the chest disease dataset is 2.75%, and for the IRMA dataset, it is 13.47%. Also, only ten convolution layers are utilized in the proposed model, which is very small in number compared to the other pre-trained models. Conclusion: The proposed technique shows remarkable improvement in performance metrics over CNN-based state-of-the-art methods. It also offers a significant improvement in performance metrics over different pre-trained models for the two different medical x-ray image datasets.


Clay Minerals ◽  
1973 ◽  
Vol 10 (2) ◽  
pp. 87-97 ◽  
Author(s):  
R. J. O. Hamblin

AbstractThe less than 10 μm and less than 3 μm fractions of the heterogenous Haldon Gravels have been examined by X-ray diffractometry. Kaolinite of high to low crystallinity is the dominant clay mineral, with variable amounts of illite (clay mica) ; quartz, a little feldspar and anatase also occur. The kaolinite has been ranked using the crystallinity index of Hinckley and also by indices derived from the ratio of peak height to background height for the 10 and 11 peaks.Clay from the matrix of the psaphitic members of the Buller's Hill Gravel contains intermediate grade kaolinite with a little illite, but clay bodies included in this formation contain only low grade kaolinite with a high, but variable proportion of illite. The Tower Wood Gravel contains two distinct populations; one is identical to that of the Buller's Hill Gravel, the other consists of high crystallinity kaolinite with a little illite. Head Gravel formed from the Buller's Hill Gravel by solifluction contains intermediate to low crystallinity kaolinite.


2014 ◽  
Vol 87 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Zhaogang Liu ◽  
Mei Li ◽  
Yanhong Hu ◽  
Hai Fu ◽  
Mitang Wang ◽  
...  

ABSTRACT Rubber composites were synthesized by natural rubber filled with cerium oxide with different particle diameters. The dispersion morphology of cerium oxide in rubber matrix and the mechanical properties of composites were studied, and the contrast experiment of reinforcing rubber with cerium oxide was performed. The results showed that the small particles of cerium oxide had better disparity than the large particles of cerium oxide in NR. The mechanical properties of rubber filled with small particles of cerium oxide were better than those of rubber filled with large particles of cerium oxide. The crystalline rubber was measured by X-ray diffraction, which indicated that the CeO2 accelerated crystallization capacity and confined the rubber chain movement. The tensile strength of rubber was increased by this confinement.


HortScience ◽  
2003 ◽  
Vol 38 (6) ◽  
pp. 1144-1147 ◽  
Author(s):  
Jeffrey H. Gillman ◽  
David C. Zlesak ◽  
Jason A. Smith

Roses in nursery and landscape settings are frequently damaged by black spot, whose causal agent is the fungus Diplocarpon rosae F.A. Wolf. Potassium silicate was assessed as a media-applied treatment for decreasing the severity and incidence of black spot infection. Roses were treated with 0, 50, 100, or 150 mg·L-1 silicon as potassium silicate incorporated into irrigation water on either a weekly or daily schedule. Five weeks after treatments were initiated, plants were inoculated with D. rosae. Roses began to show visual symptoms of infection §4 days later. Roses that had 150 mg·L-1 silicon applied on a daily schedule had significantly more silicon present in their leaves than other treatments as measured by scanning electron microscopy and energy-dispersive x-ray analysis. In addition, roses that had 100 and 150 mg·L-1 silicon applied on a daily schedule had fewer black spot lesions per leaf and fewer infected leaves than any of the other treatments by the end of the experiment 7 weeks later. Although roses treated with higher levels of silicon on a daily basis fared better than roses in the other treatments, all of the roses were heavily infected with D. rosae by the end of the study. The results reported here indicate that using potassium silicate in irrigation water may be a useful component of a disease management system.


2014 ◽  
Vol 78 (6) ◽  
pp. 1465-1472 ◽  
Author(s):  
Taher Rabizadeh ◽  
Caroline L. Peacock ◽  
Liane G. Benning

Results are reported here of an investigation into the effects of three carboxylic acid additives (tartaric, maleic and citric acids) on the precipitation of calcium sulfate phases. Precipitation reactions were followed at pH 7 in the pure CaSO4 system and in experiments with 0–20 ppm carboxylic acids added using in situ UV-VIS spectrophotometry (turbidity). The solid products were characterized in terms of their mineralogical composition, using X-ray diffraction, during and at the end of each reaction, and in terms of their morphological features, by scanning electron microscopy. All additives increased the time needed for turbidity to develop (induction time, start of precipitation) and the comparison between additive and additive-free experiments showed that, at equivalent concentrations, citric acid performed far better than the other two carboxylic acids. In all cases bassanite precipitated first and with time it transformed to gypsum. The addition of citrate stabilized bassanite and changed the final gypsum habit from typical needle-like crystals in the pure CaSO4 system to plates in the citrate-additive experiments.


Author(s):  
Johanna Patricia A. Cañal

An ossifying fibroma is a monostotic lesion that occurs in craniofacial bones.  It usually presents as a painless well-circumscribed, slow-growing mass in the 3rd and 4th decade.  It is a benign fibro-osseous lesion that is part of the bigger spectrum of fibro-osseous lesions which includes fibrous dysplasia, juvenile active ossifying fibroma, psammomatous ossifying fibroma, and extragnathic ossifying fibroma of the skull.    An ossifying fibroma, because of its well-circumscribed nature, lends itself to surgery better than does fibrous dysplasia.  Simple enucleation is usually sufficient for ossifying fibromas whereas curettage is probably better suited for fibrous dysplasia.    Radiographically, it is seen as a well-demarcated radiolucency in the mandible or maxilla, more common in the former than the latter.  It typically measures anywhere from 1 to 5 cm.  There may or may not be a central opacity or calcification, depending on the maturity of the lesion.  An immature lesion may present as completely radiolucent whereas a mature lesion may be completely radiopaque, although most lesions demonstrate varying degrees of radiopacity.  The images above show 2 samples of the same lesion on opposite sides of the spectrum.  Both are well-circumscribed but one is relatively radiolucent while the other is floridly sclerotic.   Is there a pathognomonic finding on x-ray?  Unfortunately, there is not one single finding that will distinguish an ossifying fibroma from other fibro-osseous lesion.  Does it matter?  Yes.  X-rays will lead the clinician to one diagnosis or the other and help plan the intended surgery.        


2021 ◽  
Vol 15 (1) ◽  
pp. 236-249
Author(s):  
Mayank R. Kapadia ◽  
Chirag N. Paunwala

Introduction: Content Based Image Retrieval (CBIR) system is an innovative technology to retrieve images from various media types. One of the CBIR applications is Content Based Medical Image Retrieval (CBMIR). The image retrieval system retrieves the most similar images from the historical cases, and such systems can only support the physician's decision to diagnose a disease. To extract the useful features from the query image for linking similar types of images is the major challenge in the CBIR domain. The Convolution Neural Network (CNN) can overcome the drawbacks of traditional algorithms, dependent on the low-level feature extraction technique. Objective: The objective of the study is to develop a CNN model with a minimum number of convolution layers and to get the maximum possible accuracy for the CBMIR system. The minimum number of convolution layers reduces the number of mathematical operations and the time for the model's training. It also reduces the number of training parameters, like weights and bias. Thus, it reduces the memory requirement for the model storage. This work mainly focused on developing an optimized CNN model for the CBMIR system. Such systems can only support the physicians' decision to diagnose a disease from the images and retrieve the relevant cases to help the doctor decide the precise treatment. Methods: The deep learning-based model is proposed in this paper. The experiment is done with several convolution layers and various optimizers to get the maximum accuracy with a minimum number of convolution layers. Thus, the ten-layer CNN model is developed from scratch and used to derive the training and testing images' features and classify the test image. Once the image class is identified, the most relevant images are determined based on the Euclidean distance between the query features and database features of the identified class. Based on this distance, the most relevant images are displayed from the respective class of images. The general dataset CIFAR10, which has 60,000 images of 10 different classes, and the medical dataset IRMA, which has 2508 images of 9 various classes, have been used to analyze the proposed method. The proposed model is also applied for the medical x-ray image dataset of chest disease and compared with the other pre-trained models. Results: The accuracy and the average precision rate are the measurement parameters utilized to compare the proposed model with different machine learning techniques. The accuracy of the proposed model for the CIFAR10 dataset is 93.9%, which is better than the state-of-the-art methods. After the success for the general dataset, the model is also tested for the medical dataset. For the x-ray images of the IRMA dataset, it is 86.53%, which is better than the different pre-trained model results. The model is also tested for the other x-ray dataset, which is utilized to identify chest-related disease. The average precision rate for such a dataset is 97.25%. Also, the proposed model fulfills the major challenge of the semantic gap. The semantic gap of the proposed model for the chest disease dataset is 2.75%, and for the IRMA dataset, it is 13.47%. Also, only ten convolution layers are utilized in the proposed model, which is very small in number compared to the other pre-trained models. Conclusion: The proposed technique shows remarkable improvement in performance metrics over CNN-based state-of-the-art methods. It also offers a significant improvement in performance metrics over different pre-trained models for the two different medical x-ray image datasets.


Author(s):  
A. V. Crewe

We have become accustomed to differentiating between the scanning microscope and the conventional transmission microscope according to the resolving power which the two instruments offer. The conventional microscope is capable of a point resolution of a few angstroms and line resolutions of periodic objects of about 1Å. On the other hand, the scanning microscope, in its normal form, is not ordinarily capable of a point resolution better than 100Å. Upon examining reasons for the 100Å limitation, it becomes clear that this is based more on tradition than reason, and in particular, it is a condition imposed upon the microscope by adherence to thermal sources of electrons.


Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Sign in / Sign up

Export Citation Format

Share Document