The Auto-Control of pH Value Based on Labview

2012 ◽  
Vol 466-467 ◽  
pp. 79-83
Author(s):  
Guo Qiang Ren ◽  
Bo Zhang ◽  
Ya Fei Lian ◽  
Zi Sheng Zhang

Grounded on Labview platform, the grid of technology of solution pH value contributes to a new device----the auto-control technology of solution pH value. This device is easier to operate just by the parameter input in the interface. And it breaks the limit of single admeasuring apparatus, meanwhile adopts the method of picking the average value by multi-metering, which avoids the delay effect caused by solution mixing link. The Acid precipitation-Flocculation process in paper making sewage sets an example for the pH value auto-control and supports PAC control of pH value with software concept..

2012 ◽  
Vol 235 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Qiang Ren ◽  
Chang Xie ◽  
Wen Zhao Li ◽  
Zi Sheng Zhang ◽  
Zhi Qiang Liu

Grounded on Labview platform, the grid of technology of solution pH value contributes to a new device----the auto-control technology of solution pH value. This device is easier to operate just by the parameter input in the interface. And it breaks the limit of single admeasuring apparatus, meanwhile adopts the method of picking the average value by multi-metering, which avoids the delay effect caused by solution mixing link. The Acid precipitation-Flocculation process in paper making sewage sets an example for the pH value auto-control and supports PAC control of pH value with software concept.


2013 ◽  
Vol 368-370 ◽  
pp. 510-513
Author(s):  
Yu Heng Wang ◽  
Jin Chuan Gu ◽  
Wei Lan Lin ◽  
Wen Yuan Wang

With copper wastewater as the research object, in sulfide - flocculation process, a comparative study of its wastewater treatment of copper sulfide dosage, type of flocculation, flocculation dosage, stirring time and other conditions. The results show that: in their respective optimum conditions, the flocculation PAC than PFS to pH adaptability, low dosage, copper removal rate reached 97.7%, the reaction solution pH value of 6.5, to achieve "Integrated Wastewater Discharge Standard" (GB8978-1996) emission standards.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Deniz Talan ◽  
Qingqing Huang

The increasing industrial demand for rare earths requires new or alternative sources to be found. Within this context, there have been studies validating the technical feasibility of coal and coal byproducts as alternative sources for rare earth elements. Nonetheless, radioactive materials, such as thorium and uranium, are frequently seen in the rare earths’ mineralization, and causes environmental and health concerns. Consequently, there exists an urgent need to remove these radionuclides in order to produce high purity rare earths to diversify the supply chain, as well as maintain an environmentally-favorable extraction process for the surroundings. In this study, an experimental design was generated to examine the effect of zeolite particle size, feed solution pH, zeolite amount, and contact time of solid and aqueous phases on the removal of thorium and uranium from the solution. The best separation performance was achieved using 2.50 g of 12-µm zeolite sample at a pH value of 3 with a contact time of 2 h. Under these conditions, the adsorption recovery of rare earths, thorium, and uranium into the solid phase was found to be 20.43 wt%, 99.20 wt%, and 89.60 wt%, respectively. The Freundlich adsorption isotherm was determined to be the best-fit model, and the adsorption mechanism of rare earths and thorium was identified as multilayer physisorption. Further, the separation efficiency was assessed using the response surface methodology based on the development of a statistically significant model.


2017 ◽  
Vol 896 ◽  
pp. 167-174 ◽  
Author(s):  
Zhi Yuan Yang ◽  
Zhuo Yue Meng ◽  
Zhi Hua Li ◽  
Si Tong Wang

Polyethylene glycol (PEG-200) and itaconic acid (IA) were used as raw materials to compound macromer through esterification reaction. A new type of specialized water-coke slurry dispersant was synthesized by copolymerization of microware, sodium methallyl sulfonate (SMAS) and maleic anhydride (MA). The experiment showed that the concentration of slurry could be reached to 63% with the dosage of 0.2%, and the apparent viscosity was 1140.3 mPa∙s. Through the analysis of the infrared, the dispersant was confirmed to have polyethylene glycol branched chain and hydrophilic functional groups such as carboxyl or sulfonic group. When the concentration of dispersant was 30 g/L, the surface tension of water could be decreased from 72.70 mN/m to 45.50 mN/m. Furthermore, when the solution pH value was 9, the Zeta potential of semi-coke powder surface could also be decreased from-13.38 mV to-25 mV with the addition of dispersant. Thus, this dispersant could increase electronegativity of semi-coke powder surface, enhance steric-hindrance effect and prevent the phenomenon of powder flocculation and gather. Meantime, it also could reinforce the semi-coke hydrophilic by reducing the surface tension of water effectively. And then, the high performance water-coke slurry could be obtained.


2014 ◽  
Vol 78 (6) ◽  
pp. 1473-1477
Author(s):  
Jan Přikryl ◽  
Andri Stefánsson

The interaction of CO2-rich water with olivine was studied using geochemical reaction modelling in order to gain insight into the effects of temperature, acid supply (CO2) and extent of reaction on the secondary mineralogy, water chemistry and mass transfer. Olivine (Fo93) was dissolved at 150 and 250ºC and pCO2 of 2 and 20 bar in a closed system and an open system with secondary minerals allowed to precipitate. The progressive water–rock interaction resulted in increased solution pH, with gradual carbonate formation starting at pH 5 and various Mg-OH and Mg-Si minerals becoming dominant at pH>8. The major factor determining olivine alteration is the pH of the water. In turn, the pH value is determined by acid supply, reaction progress and temperature.


2011 ◽  
Vol 399-401 ◽  
pp. 1967-1971
Author(s):  
Hong Yin Xu ◽  
Li Li

The paper through the synergy before mixed Phytic acid and Sodium molybdate, Sulfosalicylic acid, Organic silane, and add the active substances PEG, Optimize the Passivation liquid formula of Brass surface, Phytic acid is the main ingredient, study the affection of Phytic acid Passive film Corrosion resistance on the three main Passivation conditions: Passivation temperature, time and Passivation solution PH value. The results show that,Phytic acid passivation film process recipes as follows:Phytic acid (quality score 50%) 2~5ml/L, sodium molybdate 4~8g/L, organic material 10~30ml/L, sulfosalicylic acid 3~7g/L, polyethylene glycol 2~6g/L, deactivated temperature 30~35°C, pH value 5, deactivated time 60s. The test showed that,the phytic acid passive film can obviously enhance the anti-corrosive performance on the brass surface, its corrosion resistance proportion chromates passive film is fairly good.


2007 ◽  
Vol 534-536 ◽  
pp. 77-80 ◽  
Author(s):  
Jae Hwan Pee ◽  
Dong Wook Lee ◽  
Ungsoo Kim ◽  
Eui Seok Choi

A hyrdrothermal reaction process has been developed to prepare rod-like crystals of copper oxide using copper nitrate trihydrate as a function of synthesis temperature, stirring speed and solution pH value. The properties of the fabricated crystals were studied using scanning electron microscopy, X-ray diffraction and particle size analysis. The morphology of the synthesized CuO was dependent on both the pH value of the solution and the morphology of the seed materials. Synthesized particles have regular morphologies and a uniform size distribution.


2011 ◽  
Vol 402 ◽  
pp. 503-509
Author(s):  
Ze Hong Wang ◽  
Fu Jia Yu ◽  
Shan Cai ◽  
Shan Zhi Deng ◽  
Roger Horn

An extension of the classical Obriemoff experiments has been set up to measure the fracture energy of mica. This experimental system will be entirely independent of slurry rheology. CTAB (Cetyl Trimethyl Ammonium Bromide), sodium tripolyphosphate, sodium hexametaphosphate, and tri-sodium citrate are used as grinding aids in this study and the fracture energy has been measured for mica in air, water, and water with the addition of various concentrations of these grinding aids. The results show that the fracture energy of mica in water is about half of what it is in air. Grinding aids are shown to reduce the fracture energy of mica, but not dramatically. Addition of grinding aids reduces the fracture energy by a further 10-20%, with tri-sodium citrate appearing to be the most effective. For each grinding aid there appears to be an optimal concentration, typically around 10 mmol. An experiment is also done with sodium chloride at a range of concentrations to investigate the mechanism of these grinding aids, but no reduction in fracture energy (compared to water) was observed, hence the molecular-level mechanism of action of these grinding aids remains unclear. The effect of solution pH values on the fracture energy are also investigated using tri-sodium citrate and sodium chloride. The results show that the solution pH value may effect on the fracture energy of mica. So, in practice, both concentration and pH value of solution are important for getting better grinding results.


2019 ◽  
Vol 84 (7) ◽  
pp. 713-727 ◽  
Author(s):  
Jiteng Wan ◽  
Chunji Jin ◽  
Banghai Liu ◽  
Zonglian She ◽  
Mengchun Gao ◽  
...  

Even in a trace amounts, the presence of antibiotics in aqueous solution is getting more and more attention. Accordingly, appropriate technologies are needed to efficiently remove these compounds from aqueous environments. In this study, we have examined the electrochemical oxidation (EO) of sulfamethoxazole (SMX) on a Co modified PbO2 electrode. The process of EO of SMX in aqueous solution followed the pseudo-first-order kinetics, and the removal efficiency of SMX reached the maximum value of 95.1 % within 60 min. The effects of major factors on SMX oxidation kinetics were studied in detail by single-factor experiments, namely current density (1?20 mA cm-2), solution pH value (2?10), initial concentration of SMX (10?500 mg L-1) and concentration of electrolytes (0.05?0.4 mol L-1). An artificial neural network (ANN) model was used to simulate this EO process. Based on the obtained model, particle swarm optimization (PSO) was used to optimize the operating parameters. The maximum removal efficiency of SMX was obtained at the optimized conditions (e.g., current density of 12.37 mA cm-2, initial pH value of 4.78, initial SMX concentration of 74.45 mg L-1, electrolyte concentration of 0.24 mol L-1 and electrolysis time of 51.49 min). The validation results indicated that this method can ideally be used to optimize the related parameters and predict the anticipated results with acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document