Magnetic Properties of TbCo/(SiNx/Co)n Films

2008 ◽  
Vol 47-50 ◽  
pp. 785-788
Author(s):  
G.P. Lin ◽  
Po Cheng Kuo ◽  
P.L. Lin ◽  
Y.H. Fang ◽  
K.T. Huang

The Tb32Co68/(SiNx/Co)n films (n = 0~3) were prepared by magnetron sputtering. The magnetic anisotropy of all Tb32Co68/(SiNx/Co)n films are perpendicular to the film plane. It is found that the saturation magnetization (Ms) and perpendicular coercivity (Hc⊥ ) of the Tb32Co68/(SiNx/Co)3 film are 263 emu/cm3 and 3592 Oe, respectively. This film appears to be a promising material as a heat-assisted magnetic recording (HAMR) medium. The cross-sectional high resolution transmission electron microscope (HRTEM) images show that the interface roughness between the (SiNx/Co)n layers and TbCo layer increases as n is increased. The rough surface provides more obstacles and pinning sites that hinder the motion of the domain walls at interface between the (SiNx/Co)n layers and TbCo layer. Therefore, the Hc values are profoundly influenced by the interface roughness.

Author(s):  
H. Tochigi ◽  
H. Uchida ◽  
S. Shirai ◽  
K. Akashi ◽  
D. J. Evins ◽  
...  

A New High Excitation Objective Lens (Second-Zone Objective Lens) was discussed at Twenty-Sixth Annual EMSA Meeting. A new commercially available Transmission Electron Microscope incorporating this new lens has been completed.Major advantages of the new instrument allow an extremely small beam to be produced on the specimen plane which minimizes specimen beam damages, reduces contamination and drift.


Author(s):  
J.N. Chapman ◽  
P.E. Batson ◽  
E.M. Waddell ◽  
R.P. Ferrier

By far the most commonly used mode of Lorentz microscopy in the examination of ferromagnetic thin films is the Fresnel or defocus mode. Use of this mode in the conventional transmission electron microscope (CTEM) is straightforward and immediately reveals the existence of all domain walls present. However, if such quantitative information as the domain wall profile is required, the technique suffers from several disadvantages. These include the inability to directly observe fine image detail on the viewing screen because of the stringent illumination coherence requirements, the difficulty of accurately translating part of a photographic plate into quantitative electron intensity data, and, perhaps most severe, the difficulty of interpreting this data. One solution to the first-named problem is to use a CTEM equipped with a field emission gun (FEG) (Inoue, Harada and Yamamoto 1977) whilst a second is to use the equivalent mode of image formation in a scanning transmission electron microscope (STEM) (Chapman, Batson, Waddell, Ferrier and Craven 1977), a technique which largely overcomes the second-named problem as well.


Author(s):  
Edward Coyne

Abstract This paper describes the problems encountered and solutions found to the practical objective of developing an imaging technique that would produce a more detailed analysis of IC material structures then a scanning electron microscope. To find a solution to this objective the theoretical idea of converting a standard SEM to produce a STEM image was developed. This solution would enable high magnification, material contrasting, detailed cross sectional analysis of integrated circuits with an ordinary SEM. This would provide a practical and cost effective alternative to Transmission Electron Microscopy (TEM), where the higher TEM accelerating voltages would ultimately yield a more detailed cross sectional image. An additional advantage, developed subsequent to STEM imaging was the use of EDX analysis to perform high-resolution element identification of IC cross sections. High-resolution element identification when used in conjunction with high-resolution STEM images provides an analysis technique that exceeds the capabilities of conventional SEM imaging.


Sign in / Sign up

Export Citation Format

Share Document