Structural Evolution of Mechanically Alloyed Nanocrystalline Fe25Al50Ni25 Intermetallics

2012 ◽  
Vol 476-478 ◽  
pp. 1476-1479
Author(s):  
Qi Zhi Cao ◽  
Jing Zhang ◽  
Jian Ying Li

Nanostructured Fe25Al50Ni25intermetallics was prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). Disordered Al(Fe,Ni) solid solution was formed After 50 h of milling. Al(Fe,Ni) solid solution milled for 100h transformed into FeNi,FeNi3 and AlNi3 phase. The power annealed at temperature 500 results in forming of intermetallics AlFe0.23Ni0.77, Al1.1Ni0.9 , AlNi and two unknown phase after 5h milling. The nanocrystalline metallic compound was obtained after 100h milling.

2013 ◽  
Vol 275-277 ◽  
pp. 1751-1754
Author(s):  
Zhang Jing ◽  
Qi Zhi Cao ◽  
Zheng Liang Li

Nanostructured Al-25at.%Fe-5at.%Ni intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). The solid solutions of Fe (Al) and Ni (Fe) in the Al70Fe25Ni5 system are observed at the early milling stage. The solid solutions transforms into amorphous and disordered Al (Fe, Ni) phase. The last milling products in the Al70Fe25Ni5 system are Al3Ni2, AlFe3 and AlFe0.23Ni0.77 phases.


2012 ◽  
Vol 476-478 ◽  
pp. 1318-1321
Author(s):  
Qi Zhi Cao ◽  
Jing Zhang

Nanostructured Fe25Al57.5Ni17.5intermetallics was prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). Disordered Al(Fe,Ni) solid solution was formed at the early stage. After 50 h of milling, Al(Fe,Ni) solid solution transformed into Al3Ni2,AlFe3,AlFe0.23Ni0.77 phase. The power annealed at temperature 500 results in forming of intermetallics AlFe3 and FeNi3 after 5h milling. The nanocrystalline intermetallic compound was obtained after 500h milling.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


Author(s):  
José Luis Iturbe-García ◽  
Manolo Rodrigo García-Núñez ◽  
Beatriz Eugenia López-Muñoz

Mg2Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlledconditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a TGA system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition.        


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 310
Author(s):  
Ga Eon Kim ◽  
Tae Kyu Kim ◽  
Sanghoon Noh

Fe-10Cr-5Y2O3 powders were mechanically alloyed using a high energy horizontal ball-mill apparatus, and the effect of heat treatment on the behavior of nano-sized oxide particles formed in the mechanically alloyed Fe-10Cr-5Y2O3 powders was investigated. Elongated Cr-rich and Y-rich oxides were observed in the mechanically alloyed powders. During the heating of these powders above 700 °C, the elongated Cr-rich oxides were dramatically changed to a near- spherical morphology. Cubic-Y2O3, monoclinic-Y2O3 and YFeO3 phases were also found after heat treatment at 1150 °C for 1h, indicating that the Y-rich oxide phase was transformed to the cubic-Y2O3, monoclinic-Y2O3 and YFeO3 ones. It is thus concluded that both a morphological change of Cr-rich oxide and a phase transformation of Y-rich oxide during the heating of mechanically alloyed powders could be mainly attributed to extremely high energy, accumulated by the mechanical alloying process.


2014 ◽  
Vol 802 ◽  
pp. 66-71
Author(s):  
Rodrigo Estevam Coelho ◽  
D.B. Silvany ◽  
M.D.C. Sobral ◽  
M.C.A. Silva

In this works, aluminum scraps powders were mixed with commercial graphite and mechanically alloyed in a high-energy ball mill and subsequently powders sintering. The initial grinding of aluminum scraps for 2 hours and then mixed with commercial graphite powder at a proportion of (y)Al-(x)C (wt%) (x = 1, 5 e 10, 25). The mixture of aluminum and graphite powders was processed for a time at 5 hours of milling. The samples were sintered at a temperature of 750°C and 1000°C. Samples were analyzed by scanning electron microscopy and X-ray diffraction. The results of this study were to find important parameters of composition and sintering, because the increase in concentration of carbon in the aluminum indicates that the material may have different applications.


2014 ◽  
Vol 970 ◽  
pp. 252-255 ◽  
Author(s):  
Tayebeh Gheiratmand ◽  
Saeed Mohammadi Siyani ◽  
Hamid Reza Madaah Hosseini ◽  
Parviz Davami

In this research, FINEMET alloy with composition of Fe73.5Si13.5B9Nb3Cu1was produced by mechanical alloying from elemental powders. The effect of milling time on the magnetic and structural properties of alloy has been investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometery. The results showed that milling for 53 hr leads to the formation of Fe supersaturated solid solution which includes Si, B and Nb atoms with mean crystallite size of ~30 nm. The shift of the main peak of Fe to the higher angles indicated that Si and B atoms dissolve in the Fe solid solution, at primary stage of mechanical alloying, up to the 42 hr while Nb atoms dissolve at final stages. The magnetization of milled powder for 53 hr was 173.7 emu/g, almost the same as that of the melt-spun ribbon. In addition; the coercivity reached to 15.5 Oe after 53 hr of milling. The higher value of coercivity in mechanically alloyed samples is attributed to strains induce to the structure during milling and the lack of amorphous phase and exchange interaction between nanograins.


2013 ◽  
Vol 750-752 ◽  
pp. 667-670
Author(s):  
C.J. Li ◽  
L. Teng ◽  
J. Tan ◽  
Q. Yuan ◽  
J.J. Tang ◽  
...  

Cu90Zr10 alloy powder was prepared by high-energy ball milling. The microstructure and property evolution of this alloy powder during mechanical alloying (MA) were investigated by using X-ray diffraction and optical microscopy (OM). The alloy powder with an average grain size of 10 - 40 nm was obtained, and the grain size was found to decrease gradually with increasing milling time. The microhardness reached a maximum value (about 295 Hv) after 30 h milling. The internal microstrain and the microhardness of the samples increased due to the grain refinement and solid solution during milling, and 10at.% Zr could be brought into Cu lattice by solid solution during MA. At last, the mechanisms of strengthening were discussed.


2010 ◽  
Vol 163 ◽  
pp. 243-246 ◽  
Author(s):  
Marek Krasnowski ◽  
Tadeusz Kulik

In the present work, an elemental powder mixture of Al60Fe20Ti15Ni5 (at.%) was mechanically alloyed in a high-energy ball mill. The phase transformations occurring in the material during milling were studied with the use of X-ray diffraction. The results obtained show that an amorphous phase was formed during performed mechanical alloying process. Thermal behaviour of the milling product was examined by differential scanning calorimetry. It was found that amorphous phase crystallised above 540 °C when a heating rate of 40 °C/min was applied. On the basis of X-ray diffraction results, crystallisation product was identified as a cubic phase with the lattice parameter a0 = 11.856 Å, isomorphic with the 2 (Al2FeTi, fcc structure D8a) phase. The mean crystallite size of the crystallised 2 phase was 19 nm.


2009 ◽  
Vol 1166 ◽  
Author(s):  
Thomas Ch. Hasapis ◽  
Chrysi Papageorgiou ◽  
Euripides Hatzikraniotis ◽  
Theodora Kyratsi ◽  
Konstantinos M Paraskevopoulos

AbstractNano-crystalline lead telluride powder was synthesized by mechanical alloying using a high-energy planetary ball mill. The broadening of the X-ray diffraction peaks vs ball milling time, indicates small crystalline size of the order of 30nm. IR spectroscopy results are discussed and compared to the material prepared from melt.


Sign in / Sign up

Export Citation Format

Share Document