scholarly journals Structural Evolution in Wet Mechanically Alloyed Co-Fe-(Ta,W)-B Alloys

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.

2013 ◽  
Vol 275-277 ◽  
pp. 1751-1754
Author(s):  
Zhang Jing ◽  
Qi Zhi Cao ◽  
Zheng Liang Li

Nanostructured Al-25at.%Fe-5at.%Ni intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). The solid solutions of Fe (Al) and Ni (Fe) in the Al70Fe25Ni5 system are observed at the early milling stage. The solid solutions transforms into amorphous and disordered Al (Fe, Ni) phase. The last milling products in the Al70Fe25Ni5 system are Al3Ni2, AlFe3 and AlFe0.23Ni0.77 phases.


2012 ◽  
Vol 476-478 ◽  
pp. 1476-1479
Author(s):  
Qi Zhi Cao ◽  
Jing Zhang ◽  
Jian Ying Li

Nanostructured Fe25Al50Ni25intermetallics was prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). Disordered Al(Fe,Ni) solid solution was formed After 50 h of milling. Al(Fe,Ni) solid solution milled for 100h transformed into FeNi,FeNi3 and AlNi3 phase. The power annealed at temperature 500 results in forming of intermetallics AlFe0.23Ni0.77, Al1.1Ni0.9 , AlNi and two unknown phase after 5h milling. The nanocrystalline metallic compound was obtained after 100h milling.


2005 ◽  
Vol 38 (5) ◽  
pp. 749-756 ◽  
Author(s):  
Ulrich Gesenhues

The polygonization of 200 nm rutile crystals during dry ball-milling at 10gwas monitored in detail by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD). The TEM results showed how to modify the Williamson–Hall method for a successful evaluation of crystal size and microstrain from XRD profiles. Macrostrain development was determined from the minute shift of the most intense reflection. In addition, changes in pycnometrical density were monitored. Accordingly, the primary crystal is disintegrated during milling into a mosaic of 12–35 nm pieces where the grain boundaries induce up to 1.2% microstrain in a lower layer of 6 nm thickness. Macrostrain in the interior of the crystals rises to 0.03%. The pycnometrical density, reflecting the packing density of atoms in the grain boundary, decreases steadily by 1.1%. The results bear relevance to our understanding of plastic flow and the mechanism of phase transitions of metal oxides during high-energy milling.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2006 ◽  
Vol 514-516 ◽  
pp. 1265-1268
Author(s):  
Benilde F.O. Costa ◽  
Vitor S. Amaral ◽  
Gerard Le Caër ◽  
Gerard Le Caër

Elemental powder mixtures of Fe and Si were mechanically alloyed with a ball-mill. Mössbauer spectroscopy and X-ray diffraction were used to characterise the microstructural changes of these mixtures which are induced by high-energy ball-milling. Mössbauer spectra are discussed in terms of two main spectral components (corresponding to FeSi alloy and α-Fe) and the time dependence of the alloy formation follows a Johnson-Mehl type law. Calorimetry measurements show that the formed alloy is stable up to 800°C as no crystallisation or phase transformation peaks are observed. From X-ray diffraction, a crystallite size of 9 nm is obtained. Magnetic measurements at low temperature were carried out on the final alloy and the saturation magnetic moment at 4.2K is 0.44 μB/Fe.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Carolina N. Keim ◽  
Jilder D. P. Serna ◽  
Daniel Acosta-Avalos ◽  
Reiner Neumann ◽  
Alex S. Silva ◽  
...  

On 5 November 2015, a large tailing deposit failed in Brazil, releasing an estimated 32.6 to 62 million m3 of iron mining tailings into the environment. Tailings from the Fundão Dam flowed down through the Gualaxo do Norte and Carmo riverbeds and floodplains and reached the Doce River. Since then, bottom sediments have become enriched in Fe(III) oxyhydroxides. Dissimilatory iron-reducing microorganisms (DIRMs) are anaerobes able to couple organic matter oxidation to Fe(III) reduction, producing CO2 and Fe(II), which can precipitate as magnetite (FeO·Fe2O3) and other Fe(II) minerals. In this work, we investigated the presence of DIRMs in affected and non-affected bottom sediments of the Gualaxo do Norte and Doce Rivers. The increase in Fe(II) concentrations in culture media over time indicated the presence of Fe(III)-reducing microorganisms in all sediments tested, which could reduce Fe(III) from both tailings and amorphous ferric oxyhydroxide. Half of our enrichment cultures converted amorphous Fe(III) oxyhydroxide into magnetite, which was characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The conversion of solid Fe(III) phases to soluble Fe(II) and/or magnetite is characteristic of DIRM cultures. The presence of DIRMs in the sediments of the Doce River and tributaries points to the possibility of reductive dissolution of goethite (α-FeOOH) and/or hematite (α-Fe2O3) from sediments, along with the consumption of organics, release of trace elements, and impairment of water quality.


2012 ◽  
Vol 730-732 ◽  
pp. 925-930
Author(s):  
Daniela Nunes ◽  
Vanessa Livramento ◽  
Horácio Fernandes ◽  
Carlos Silva ◽  
Nobumitsu Shohoji ◽  
...  

Nanostructured copper-diamond composites can be tailored for thermal management applications at high temperature. A novel approach based on multiscale diamond dispersions is proposed for the production of this type of materials: a Cu-nDiamond composite produced by high-energy milling is used as a nanostructured matrix for further dispersion of micrometer sized diamond. The former offers strength and microstructural thermal stability while the latter provides high thermal conductivity. A series of Cu-nDiamond mixtures have been milled to define the minimum nanodiamond fraction suitable for matrix refinement and thermal stabilization. A refined matrix with homogenously dispersed nanoparticles could be obtained with 4 at.% nanodiamond for posterior mixture with mDiamond and subsequent consolidation. In order to define optimal processing parameters, consolidation by hot extrusion has been carried out for a Cu-nDiamond composite and, in parallel, for a mixture of pure copper and mDiamond. The materials produced were characterized by X-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.


2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


Sign in / Sign up

Export Citation Format

Share Document