Sintering of Al4C3 Using Aluminum Scrap and Commercial Graphite

2014 ◽  
Vol 802 ◽  
pp. 66-71
Author(s):  
Rodrigo Estevam Coelho ◽  
D.B. Silvany ◽  
M.D.C. Sobral ◽  
M.C.A. Silva

In this works, aluminum scraps powders were mixed with commercial graphite and mechanically alloyed in a high-energy ball mill and subsequently powders sintering. The initial grinding of aluminum scraps for 2 hours and then mixed with commercial graphite powder at a proportion of (y)Al-(x)C (wt%) (x = 1, 5 e 10, 25). The mixture of aluminum and graphite powders was processed for a time at 5 hours of milling. The samples were sintered at a temperature of 750°C and 1000°C. Samples were analyzed by scanning electron microscopy and X-ray diffraction. The results of this study were to find important parameters of composition and sintering, because the increase in concentration of carbon in the aluminum indicates that the material may have different applications.

2005 ◽  
Vol 498-499 ◽  
pp. 600-605 ◽  
Author(s):  
W.M. Lima ◽  
W.R. Weinand ◽  
O.A.A. dos Santos ◽  
A. Paesano ◽  
F.H.M. Ortega

In this work, a combination of methods for HAp synthesis is investigated. Fish bones were calcined at 900oC between 4h and 12h, followed by milling in a high-energy ball mill, by 2h and 4h at 300rpm. The obtained material was characterized by using techniques such as laser granulometry, X-ray diffraction, scanning electron microscopy (SEM) and atomic absorption spectroscopy. The performed analysis permitted us to obtain the Ca/P ratio, the morphology and the phase structure of hydroxyapatite particles powder.


2019 ◽  
Vol 969 ◽  
pp. 68-72
Author(s):  
K. Chandra Sekhar ◽  
Balasubramanian Ravisankar ◽  
S. Kumaran

An attempt was made to synthesis Al-5083alloy through high energy ball milling and densification through ECAP. The elemental powders consisting of Al5083 was milled for 5, 10 and 15 hrs using Retsch high energy ball mill (PM400). The physical and structural properties of mechanically alloyed particulates were characterised by diffraction methods and electron microscopy. The 15hrs nanocrystalline structured particulates of Al5083 alloy shows crystallite size of 15nm. Scanning Electron Microscope (SEM) reveals the morphology of alloy which is irregular shaped. The size of alloyed particulates also measured using SEM and found to be 7μm for 15hrs of milling. The 15hr milled alloy particulates were densified by ECAP through 90o die channel angle. Maximum densification of 92% and highest hardness of 63HRB was achieved for sample consolidated with route-A for two passes along with sintering.


2015 ◽  
Vol 47 (1) ◽  
pp. 15-22 ◽  
Author(s):  
N. Obradovic ◽  
N. Djordjevic ◽  
A. Peles ◽  
S. Filipovic ◽  
M. Mitric ◽  
...  

Due to its characteristics, cordierite, 2MgO?2Al2O3?5SiO2, is a high-temperature ceramic material of a great scientific interest. Mechanical activation of the starting mixtures containing 5.00 mass% TiO2 was performed in a high-energy ball mill for 10 minutes. The compaction pressure varied from 0.5 to 6tcm-2 (49-588 MPa). The sintering process was performed at 1350?C for four hours in the air atmosphere. The phase composition of the activated and sintered samples was analyzed using X-ray diffraction. Scanning electron microscopy was used to analyze the microstructure of both compacted and sintered samples. The authors have investigated the influence of compaction pressure on the sintered samples and their electrical properties.


2013 ◽  
Vol 275-277 ◽  
pp. 1751-1754
Author(s):  
Zhang Jing ◽  
Qi Zhi Cao ◽  
Zheng Liang Li

Nanostructured Al-25at.%Fe-5at.%Ni intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential thermal analysis (DTA). The solid solutions of Fe (Al) and Ni (Fe) in the Al70Fe25Ni5 system are observed at the early milling stage. The solid solutions transforms into amorphous and disordered Al (Fe, Ni) phase. The last milling products in the Al70Fe25Ni5 system are Al3Ni2, AlFe3 and AlFe0.23Ni0.77 phases.


2015 ◽  
Vol 1094 ◽  
pp. 300-304
Author(s):  
Jing Yao ◽  
Shi Qiang Lu ◽  
Xuan Xiao

High energy ball mill tests under the condition of the ball material mass ratio 13:1 and the rotate speed 400 r/min have been employed to investigate the process of mechanical alloying (MA) of Ta and Cr powder mixed in the mole ratio of 1:2.The microstructure evolution process and phase composition were explained useing scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that, the milled 20h powder existed in Ta (Cr) supersaturated solid solution and amorphous after 40h. Although the hours were spent on ball milling reached to 50h, Laves phase TaCr2had not been made during the process.


1993 ◽  
Vol 8 (2) ◽  
pp. 307-313 ◽  
Author(s):  
K. Aoki ◽  
A. Memezawa ◽  
T. Masumoto

An intermetallic compound c–NiZr and a mixture of elemental powders of nickel and zirconium [Ni50Zr50 (at. %)] have been mechanically ground (MG) and mechanically alloyed (MA), respectively, using a high-energy ball mill in various atmospheres. The products were characterized by x-ray diffraction, transmission electron microscopy, differential scanning calorimetry, and chemical analysis as a function of milling time. An amorphous a–NiZr alloy was prepared by both MG and MA in an argon atmosphere. By MG of NiZr, an amorphous nitride a–NiZrN0.15 was synthesized in a nitrogen atmosphere, while a crystalline hydride c–NiZrH3 was formed in a hydrogen atmosphere. On the other hand, ZrN and ZrH2 were formed by MA in a nitrogen and a hydrogen atmosphere, respectively. The amorphization reaction was observed between ZrH2 and Ni by further MA in a hydrogen atmosphere, and a mixture of a–NiZrxHy (x < 1) and ZrH2 was obtained. However, no amorphization was observed by MA between ZrN and Ni in a nitrogen atmosphere. The effects of the milling atmosphere on the phase formations during MG and MA are discussed based on the gas absorption rate.


2018 ◽  
Vol 2 (3) ◽  
pp. 50 ◽  
Author(s):  
David Florián-Algarín ◽  
Angelisse Ramos-Morales ◽  
Michelle Marrero-García ◽  
Oscar Suárez

This research focuses on the fabrication of aluminum wires treated with MoB2 nanoparticles and their effect on selected mechanical and thermal properties of the wires. These nanoparticles were obtained by fragmentation in a high-energy ball mill and then mechanically alloyed with pure aluminum powder to form Al/MoB2 pellets. The pellets were added to molten pure aluminum (99.5%) at 760 °C. Afterwards, the treated melt was cast into cylindrical ingots, which were cold-formed to the desired final diameter with intermediate annealing. X-ray diffraction and optical microscopy allowed characterizing the structure and microstructure of the material. The wires underwent tensile and bending tests, as well as electrical measurements. Finally, this research demonstrated how the mechanical properties of aluminum wires can be enhanced with the addition of MoB2 nanoparticles with minimal effects on the material resistivity.


2006 ◽  
Vol 509 ◽  
pp. 141-146
Author(s):  
E. Martínez-Franco ◽  
Thomas Klassen ◽  
Rüdiger Bormann ◽  
D. Jaramillo-Vigueras

Nanocrystalline intermetallic Mg2Ni is successfully produced on a batch production scale from elemental powder blends by mechanical alloying using a high-energy rotor ball mill (Simoloyer). Different ball-to-powder mass ratios are used in order to provide results for scaling to industrial production. Transformation of elemental Mg-Ni powders into the Mg2Ni intermetallic is observed by x-ray diffraction. Particle morphology during milling is observed by scanning electron microscopy. A relatively low Fe contamination is estimated by energy dispersive spectrometry.


2011 ◽  
Vol 319-320 ◽  
pp. 61-63 ◽  
Author(s):  
Xiu Yan Guo ◽  
Guo Jin Ma ◽  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Zhi Gao

Cu-4% mixed-powder consisting of rough copper powder and graphite powder was separately mechanical alloyed by high-energy ball milling. The phases and micrograph of these powders were determined by X-ray diffraction and scanning electron microscopy (SEM). The results show an increase in the lattice parameter of copper with milling times, up to a saturation value of about 24h; There was an absence of graphite reflections from X-ray diffractograms after longer milling times.


2006 ◽  
Vol 509 ◽  
pp. 135-140
Author(s):  
Francisco Cruz-Gandarilla ◽  
R. Gayosso-Armenta ◽  
J. Gerardo Cabañas-Moreno ◽  
Heberto Balmori-Ramírez

Elemental powder mixtures of Co and Ti were subjected to high-energy ball milling in order to produce mechanically alloyed powders with nominal compositions Co64Ti36, Co67Ti33, Co70Ti30, Co73Ti27, Co76Ti24 and Co85Ti15. The mechanically alloyed powders were treated during 30 minutes in inert atmosphere at temperatures in the range 300 – 700 °C. Both the as-milled powders as well as those subjected to heat treatments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and differential thermal analysis. As-milled products consist mostly of agglomerated powders with a size between 10 and 80 µm which give an amorphous-like diffraction pattern, except for the Co85Ti15 sample whose pattern presents the characteristic peaks of the Co3Ti intermetallic phase. The transformation of the asmilled powders occurs at temperatures in the range of about 530 – 670 °C with clearly observed exothermic events. The Co3Ti phase is found in all heat treated samples, together with fcc-Co (in Co76Ti24 and Co85Ti15) or the hexagonal Co2Ti intermetallic phase (in Co64Ti36, Co67Ti33 and Co70Ti30); the Co73Ti27 sample was essentially single-phase Co3Ti after heating to 700 °C. Our results suggest the occurrence of crystallization of an amorphous phase in two overlapping stages during heating of the mechanically alloyed powders.


Sign in / Sign up

Export Citation Format

Share Document