A Solar Cell Made by a Hybrid Film of P3HT and Cubic-Like PbS

2012 ◽  
Vol 479-481 ◽  
pp. 166-169
Author(s):  
Peng Wang ◽  
Li Bo Fan ◽  
Zhen Hua Zhang ◽  
Yan Lei ◽  
Yan Ge Zhang ◽  
...  

Cubic-like lead sulfide (PbS) films were in situ fabricated on lead (Pb) foil on a large scale by solvothermal method. Ethanol and ethylenediamine were used as the solvent. The films were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), absorption and the Fourier transformation-infrared (FT-IR) spectra. A solar cell was made by the hybrid film of P3HT and cubic-like PbS. The solar cells are photosensitive in a large spectral range (visible and near infrared regions). The cell with the area of 0.20 cm2 without any special treatment has shown the values of open-circuit voltage (Voc) of 250 mV and short circuit current (Jsc) of 0.01 mA/cm2 with the efficiency of 0.01 % and the fill factor (FF) is 0.36 under illumination intensity of 100 mW/cm2.

2012 ◽  
Vol 567 ◽  
pp. 236-239
Author(s):  
Peng Wang ◽  
An Mei Wang ◽  
Zhen Hua Zhang ◽  
Li Bo Fan ◽  
Yan Lei ◽  
...  

Lead sulfide (PbS) magic cubes were prepared by a simple hydrothermal method without any organic solvent. The product was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and absorption spectrum. A solar cell, with a structure of Al/P3HT:PbS/PEDOT:PSS/ITO/Glass, was made. By a spin coating method, a hybrid film of poly(3-hexylthiophene) (P3HT) and PbS was prepared on the PEDOT:PSS layer. The solar cells are photosensitive in a large spectral range (visible and near infrared regions). The cells, with the area of 0.15 cm2 without any special treatment, have shown the values of open-circuit voltage (Voc) of 242 mV, short circuit current (Jsc) of 0.01 mA/cm2, energy conversion efficiency (η) of 0.01 % and fill factor (FF) of 0.31 under illumination intensity of 100 mW/cm2.


2012 ◽  
Vol 569 ◽  
pp. 176-179
Author(s):  
Peng Wang ◽  
Li Bo Fan ◽  
Li Juan Sun ◽  
Zhen Hua Zhang ◽  
Xin Bing Zhu ◽  
...  

A film solar cell was made with a structure of Glass/ITO/CdS/PbS/Al. CdS film was obtained by thermal evaporation. PbS film was prepared by a simple solid-solid reaction. The solar cells are photosensitive in a large spectral range (extending from near infrared to high energy side regions). The cell with the area of 0.15 cm2 without any special treatment has shown the values of open-circuit voltage (Voc) of 138 mV and short circuit current (Jsc) of 0.01 mA/cm2 with the efficiency of 0.33 % and the fill factor (FF) is 0.26 under illumination intensity of 100 mW/cm2.


2012 ◽  
Vol 569 ◽  
pp. 172-175
Author(s):  
Peng Wang ◽  
Li Bo Fan ◽  
Meng Yuan Yang ◽  
Zhen Hua Zhang ◽  
Xin Bing Zhu ◽  
...  

A new hybrid film solar cell was made with a structure of Glass/ITO/PbS/P3HT/Al. PbS film was prepared by a simple solid-solid reaction and poly(3-hexylthiophene) (P3HT) film was obtained by a spin coating method. The solar cells are photosensitive in a large spectral range (extending from near infrared to high energy side regions). Without any special treatment, the cell with an area of 0.15 cm2 has shown values of open-circuit voltage (Voc) of 85 mV and fill factor (FF) of 0.33 under an illumination intensity of 100 mW/cm2.


2007 ◽  
Vol 1031 ◽  
Author(s):  
Christopher Bailey ◽  
Cory Cress ◽  
Ryne Raffaelle ◽  
Seth Hubbard ◽  
William Maurer ◽  
...  

AbstractThe effects of strain within stacked layers of InAs quantum dots (QDs) were investigated. InAs QD test structures with and without strain compensation (SC) were analyzed using atomic force microscopy, transmission electron microscopy, and X-ray diffraction. The affects of strain compensation on test structure morphology and on GaAs-based QD solar cell performance was studied as a function of the thickness of the SC layer. X-ray diffraction analysis of the QD embedded test structures reveals a relationship between the SC thickness and the observed crystalline quality. Air mass zero illuminated current vs. voltage data and spectral responsivity measurements were used for the solar cell comparison. When SC is employed, QD insertion shows a lower open circuit voltage, in reference to a baseline device without QDs, but leads to an enhancement in the short circuit current of the device.


2014 ◽  
Vol 925 ◽  
pp. 605-609 ◽  
Author(s):  
A.S. Obaid ◽  
Alaa Ahmed Dihe ◽  
B.M. Salih ◽  
Z. Hassan ◽  
Y. Al-Douri ◽  
...  

This study reports on the fabrication of a Schottky solar cell with a cross-sectional schematic: ITO/PbS/Al with a commercial transparent conductive ITO and a p-type PbS absorber layer deposited by using a thermal evaporator. The structural and optical properties of constituent films are presented. X-ray diffraction showed that the thin films are polycrystalline. By using scanning electron microscopy, this study showed that the films possessed a uniform surface morphology over the substrate, and the films exhibit a nanocoral structure. Open circuit voltage,short-circuit current density and characteristics were studied under 30 mW/cm2 solar radiation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shibu Joseph ◽  
Albin John P. Paul Winston ◽  
S. Muthupandi ◽  
P. Shobha ◽  
S. Mary Margaret ◽  
...  

This paper is aimed at how to select, extract, and characterize natural dyes and to use them as sensitizers in dye-sensitized solar cells (DSSCs). Dyes obtained from fresh sources of annatto fruits, black plums, cactus fruits, turmeric roots, and red spinach leaves were used as sensitizers. The dye pigments were analyzed using UV-Vis spectrophotometer and FT-IR for the characterization of their spectral properties. The combination from Titanium dioxide paste with the powdered nanotubes was used as photoanodes for DSSCs. The photovoltaic properties of the DSSCs such as efficiency, fill factor, open-circuit voltage, and short circuit current were studied using a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. The highest power conversion efficiencies (η) of 0.7% was achieved for the DSSCs fabricated using dye extracted from annatto fruits and 0.4% each for dyes extracted from black plum fruits and cactus fruits, respectively. The widespread accessibility of these fruits, roots, and leaves and ease of extraction of dyes from these ordinarily available natural resources render them unique and low-cost candidates for solar cell fabrication.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


Sign in / Sign up

Export Citation Format

Share Document