Application of Three-Dimension Visualization Technology in Water Supply Pipeline Information System Based on VTK

2012 ◽  
Vol 487 ◽  
pp. 558-561
Author(s):  
Cai Ying Zhou ◽  
Long Jun Huang

The underground water supply pipeline information system used currently is short of describing the pipe in three dimensions. Aiming at this point, the 3D underground pipe information system was achieved with the help of three-dimension graphics tool (VTK) in this paper. With the system, users can browse the 3D underground pipes and search interrelated datum, which raises the efficiency and standard of city digitizing management.

2013 ◽  
Vol 316-317 ◽  
pp. 723-726
Author(s):  
Jian Qun Jiang ◽  
Xiao Wen Yao ◽  
Yi Ting Lu

Water supply pipeline system is a key issue in urban lifeline engineering, and the seismic assessment for the system damage is of significant importance. In this study, method of seismic damage assessment on underground water supply pipeline is introduced. With emphasis on the uncertainties of earthquake level, ground condition, soil-pipe interaction and capacity to resist pipe deformation in longitudinal direction, the check point method is applied to the reliability study of water pipeline, and a case study is presented to show the implementation of the proposed model.


2020 ◽  
Vol 12 (4) ◽  
pp. 1670
Author(s):  
Shifan Deng ◽  
Siyu Ma ◽  
Xiaowen Zhang ◽  
Shiqiang Zhang

An underground water supply pipeline system is an integral part of urban infrastructure. The safety, stability, reliability, and efficiency of this water system are critical for the daily work and livelihood of the people dependent on it. However, with the development of cities in China, the water supply systems in urban communities require constant re-building and improvement, which complicates the system. Considering the defects of obsolete design, lack of information, and irregularity of the constructions over the years, the maintenance of underground pipelines in older communities is onerous and arduous. In this work, the older pipeline system at the Taibai campus of Northwest University, Shaanxi Province, was taken as one typical old urban community and investigated by different measures. Detection was performed from the available concentrated water supply wells to surrounding areas combining electromagnetic induction, geophysical method by ground-penetrating radar (GPR), and acoustic detection methods. Applying the integrated detection method and considering known pipeline network designs, the properties and complex relationships of different pipeline materials (cast iron, polyethylene (PE), and polyvinyl chloride (PVC)) were determined. In addition, a spatial distribution map of the pipes from wells and the main input water supply pipelines was achieved. The results suggest that the integrated detection scheme combining these three methods provides an effective approach to analyze complex water supply pipelines in older communities, in which each single detection method has more uncertainties. The study provides valuable references for similar communities in many developing countries.


Author(s):  
Gennadiy Ol'garenko ◽  
Boris Gordon

A method of rain uniformity’s distribution was presented for different spraying devices, which were set on irrigation machines working in different mode of moving. A method for effective irrigation radius and width calculation was justified by using irrigation depth uniformity values from the area under water supply pipeline of the irrigation machine.


2022 ◽  
pp. 1420326X2110564
Author(s):  
Chuanmin Tai ◽  
Guansan Tian ◽  
Wenjun Lei

Condensation is a major issue in the safe operation of utility tunnels. To address the condensation problem, the indoor air temperature, relative humidity (RH) and surface temperature in an urban utility tunnel in Jining were continuously measured, and the condensation conditions were surveyed and analysed. The results indicated that under natural ventilation conditions, the air temperature in the comprehensive cabin varied from 23.4°C to 24.5°C, the RH fluctuated between 86.4% and 95.3%, and the corresponding air dew point temperature (DPT) remained in the range of 22.2°C–22.9°C. The surface temperature of the water supply pipeline ranged from 17.8°C to 18.5°C, which was far lower than the DPT in the tunnel, resulting in serious condensation. A water supply pipeline with an anti-condensation design was developed based on environmental test data. A 25-mm-thick rubber plastic sponge insulation layer was used to thermally insulate the water supply pipeline, preventing further dew condensation. Furthermore, mechanical ventilation had little effect on reducing the RH in the tunnel and may actually cause dew condensation; therefore, a ventilation control mode was proposed in this study. These results are expected to provide basic data for further research and reference for the safe management of utility tunnels.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5450
Author(s):  
Yunfei Li ◽  
Yang Zhou ◽  
Ming Fu ◽  
Fan Zhou ◽  
Zhaozhao Chi ◽  
...  

Leakage detection methods based on the analysis of leakage acoustic signals provide an effective technical approach for detecting small leaks in water supply pipelines. From a technical perspective, the study of the propagation characteristics of acoustic waves generated by the leakage in the water supply pipeline is necessary for detecting the leak location on the basis of acoustic signals. In this study, a 3D transient leakage acoustic wave propagation equation was derived by combining the principles of fluid dynamics and Lighthill acoustic analogy theory. The propagation of the leakage-induced noise in water supply pipeline was modelled theoretically. We simulated the propagation of a leakage acoustic wave under different conditions for different target scenarios encountered in actual pipeline inspections. Specifically, we analysed the effect of different factors, such as the pipe size and acoustic source characteristics, on acoustic propagation. Finally, the simulated experiments were practically performed using a self-designed simulated water supply pipeline and self-developed spherical water supply pipeline detector to validate the simulation analysis. The results of this study provide a theoretical guidance and basis for the analysis of characteristics of leakage acoustic wave signals and the recognition of leakage conditions in water supply pipelines.


Sign in / Sign up

Export Citation Format

Share Document